Home
Class 12
MATHS
If f be a decreasing continuous function...

If `f` be a decreasing continuous function satisfying `f(x+y)=f(x)+f(y)-f(x)*f(y) (A) `1` (B) `1-e` (C) `2-e` (D) none of these

A

1

B

`1-e`

C

`2-e`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f be decreasing continuous function satisfying f(x + y) = f(x) + f(y)-f(x) f(y) Y x, y epsilon R ,f'(0)=1 then int_0^1 f(x)dx is

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Let f(x) be a continuous function in R such that f(x)+f(y)=f(x+y) , then int_-2^2 f(x)dx= (A) 2int_0^2 f(x)dx (B) 0 (C) 2f(2) (D) none of these

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f(x) be real valued and differentiable function on R such that f(x+y)=(f(x)+f(y))/(1-f(x)dotf(y)) f(0) is equals a. 1 b. 0 c. -1 d. none of these

Let f :R to R be a differentiable function satisfying: f (xy) =(f(x))/(y)+f(y)/(x) AAx, y in R ^(+) also f (1)=0,f '(1) =1 find lim _(x to e) [(1)/(f (x))] (where [.] denotes greatest integer function).

Let f(x) be a differentiable function satisfying f(y)f(x/y)=f(x) AA , x,y in R, y!=0 and f(1)!=0 , f'(1)=3 then

f:R^+ ->R is a continuous function satisfying f(x/y)=f(x)-f(y) AAx,y in R^+ .If f'(1)=1,then (a)f is unbounded (b) lim_(x->0)f(1/x)=0 (c) lim_(x->0)f(1+x)/x=1 (d) lim_(x->0)x.f(x)=0

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to