Home
Class 12
MATHS
The domain of the function f(x)=1/(sqrt(...

The domain of the function `f(x)=1/(sqrt([x]^2-2[x]-8))` is, where [*] denotes greatest integer function

A

`(-2, 5]`

B

`(-2, 5)`

C

`(-oo, -2), uu(5, oo)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{[x]^2 - 2[x] - 8}} \), where \([x]\) denotes the greatest integer function, we need to ensure that the expression under the square root is positive. This is because the square root must be defined and cannot be zero since it is in the denominator. ### Step-by-Step Solution: 1. **Identify the Condition for the Square Root**: We need to solve the inequality: \[ [x]^2 - 2[x] - 8 > 0 \] 2. **Factor the Quadratic Expression**: We can factor the quadratic: \[ [x]^2 - 2[x] - 8 = ([x] - 4)([x] + 2) \] Therefore, we need: \[ ([x] - 4)([x] + 2) > 0 \] 3. **Find the Critical Points**: The critical points occur when the expression equals zero: \[ [x] - 4 = 0 \quad \Rightarrow \quad [x] = 4 \] \[ [x] + 2 = 0 \quad \Rightarrow \quad [x] = -2 \] 4. **Test Intervals**: We will test the intervals determined by the critical points \(-2\) and \(4\): - **Interval 1**: \( (-\infty, -2) \) - **Interval 2**: \( (-2, 4) \) - **Interval 3**: \( (4, \infty) \) 5. **Evaluate Each Interval**: - For \( [x] < -2 \) (e.g., \( [x] = -3 \)): \[ (-3 - 4)(-3 + 2) = (-7)(-1) = 7 > 0 \quad \text{(Valid)} \] - For \( -2 < [x] < 4 \) (e.g., \( [x] = 0 \)): \[ (0 - 4)(0 + 2) = (-4)(2) = -8 < 0 \quad \text{(Not Valid)} \] - For \( [x] > 4 \) (e.g., \( [x] = 5 \)): \[ (5 - 4)(5 + 2) = (1)(7) = 7 > 0 \quad \text{(Valid)} \] 6. **Combine Valid Intervals**: The valid intervals for \([x]\) are: \[ [x] < -2 \quad \text{or} \quad [x] > 4 \] 7. **Translate Back to \(x\)**: - If \([x] < -2\), then \(x < -2\). - If \([x] > 4\), then \(x \geq 5\). 8. **Final Domain**: Therefore, the domain of the function \( f(x) \) is: \[ (-\infty, -2) \cup [5, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The domain of the function f(x)=(sec^(-1)x)/(sqrt(x-[x])) , where [x] denotes the greatest integers less than or equal to x is defined for all x belonging to

f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integer function.

Write the piecewise definition of the function: f(x)= [sqrt(x)] , where [.] denotes the greatest integer function.

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The domain of the function sqrt(log_(1/3) log_4 ([x]^2 - 5 )) is (where [x] denotes greatest integer function)