Home
Class 12
MATHS
Domain of f(x)=1/sqrt(x^3-3x^2+2x) is...

Domain of `f(x)=1/sqrt(x^3-3x^2+2x)` is

A

`(-oo, 0)uu(1, 2)`

B

`(-oo, 0]uu(1, 2]`

C

`[0,1)uu(2, oo)`

D

`(0,1)uu(2, oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{x^3 - 3x^2 + 2x}} \), we need to ensure that the expression inside the square root is positive, as the square root of a non-positive number is not defined in the real number system. ### Step-by-Step Solution: 1. **Set up the inequality**: We need to solve the inequality: \[ x^3 - 3x^2 + 2x > 0 \] 2. **Factor the expression**: First, we can factor out \( x \) from the expression: \[ x(x^2 - 3x + 2) > 0 \] Now, we need to factor the quadratic \( x^2 - 3x + 2 \). 3. **Factor the quadratic**: The quadratic factors as: \[ x^2 - 3x + 2 = (x - 1)(x - 2) \] Therefore, we can rewrite our inequality as: \[ x(x - 1)(x - 2) > 0 \] 4. **Identify critical points**: The critical points from the factors are: \[ x = 0, \quad x = 1, \quad x = 2 \] 5. **Test intervals**: We will test the sign of the expression \( x(x - 1)(x - 2) \) in the intervals defined by the critical points: - Interval \( (-\infty, 0) \) - Interval \( (0, 1) \) - Interval \( (1, 2) \) - Interval \( (2, \infty) \) - For \( x < 0 \) (e.g., \( x = -1 \)): \[ (-1)(-1 - 1)(-1 - 2) = (-1)(-2)(-3) < 0 \] - For \( 0 < x < 1 \) (e.g., \( x = 0.5 \)): \[ (0.5)(0.5 - 1)(0.5 - 2) = (0.5)(-0.5)(-1.5) > 0 \] - For \( 1 < x < 2 \) (e.g., \( x = 1.5 \)): \[ (1.5)(1.5 - 1)(1.5 - 2) = (1.5)(0.5)(-0.5) < 0 \] - For \( x > 2 \) (e.g., \( x = 3 \)): \[ (3)(3 - 1)(3 - 2) = (3)(2)(1) > 0 \] 6. **Combine results**: The expression \( x(x - 1)(x - 2) > 0 \) is positive in the intervals \( (0, 1) \) and \( (2, \infty) \). 7. **Write the domain**: Therefore, the domain of the function \( f(x) \) is: \[ (0, 1) \cup (2, \infty) \] ### Final Answer: The domain of \( f(x) = \frac{1}{\sqrt{x^3 - 3x^2 + 2x}} \) is: \[ (0, 1) \cup (2, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x in the domain of f(x)=sqrt(-[x]^2+3[x]-2) is

The domain of f(x) = (1)/(sqrt(x - 3)) is :

What is the domain of f(x)= 3sqrt(15-x^2) ?

Find domain f(x)=sqrt((2x+1)/(x^3-3x^2+2x))

Find the domain and range of f(x)=sqrt(x^2-3x+2)

Find the domain and the range of f(x)=sqrt(x^2-3x.)

Find the domain and range of f(x)=(1)/(sqrt(x-2))

Find the domain and range of f(x)=sqrt(3-2x-x^2)

Find the domain and range of f(x)=sqrt(3-2x-x^2)

If the domain of f(x) = sqrt (12-3^(x)-3^(3-x))+ sin ^(-1) ((2x)/(3 )) is [a,b], then a=……