Home
Class 12
MATHS
If f(x)=lim(n->oo)[2x+4x^3+6x^5++2n x...

If `f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)]` `(0ltxlt1)` then `int f(x)dx` is equal to:

A

`-sqrt(1-x^(2))`

B

`(1)/(sqrt(1-x^(2)))`

C

`(1)/((x^(2)-1))`

D

`(1)/(1-x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \lim_{n \to \infty} \left( 2x + 4x^2 + 6x^3 + \ldots + 2n x^{2n-1} \right) \] for \( 0 < x < 1 \), and then find the integral \( \int f(x) \, dx \). ### Step 1: Rewrite the function as a summation The expression inside the limit can be rewritten as a summation: \[ f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} 2k x^{2k-1} \] ### Step 2: Factor out the constant We can factor out the constant \( 2 \): \[ f(x) = 2 \lim_{n \to \infty} \sum_{k=1}^{n} k x^{2k-1} \] ### Step 3: Use the formula for the sum of a series The sum \( \sum_{k=1}^{n} k x^{k} \) can be evaluated using the formula: \[ \sum_{k=1}^{n} k x^{k} = x \frac{d}{dx} \left( \sum_{k=0}^{n} x^{k} \right) \] The sum \( \sum_{k=0}^{n} x^{k} \) is a geometric series: \[ \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \] ### Step 4: Differentiate the geometric series Differentiating with respect to \( x \): \[ \frac{d}{dx} \left( \frac{1 - x^{n+1}}{1 - x} \right) = \frac{(1 - x)(-(n+1)x^n) - (1 - x^{n+1})(-1)}{(1 - x)^2} \] This simplifies to: \[ \frac{(n+1)x^n - (n+1)x^{n+1} + 1 - x^{n+1}}{(1 - x)^2} \] ### Step 5: Evaluate the limit as \( n \to \infty \) As \( n \to \infty \) and since \( 0 < x < 1 \), the terms involving \( x^n \) vanish: \[ \lim_{n \to \infty} \sum_{k=1}^{n} k x^{k} = \frac{x}{(1 - x)^2} \] Thus, we have: \[ f(x) = 2 \cdot \frac{x}{(1 - x)^2} \] ### Step 6: Find the integral \( \int f(x) \, dx \) Now we need to find: \[ \int f(x) \, dx = \int \frac{2x}{(1 - x)^2} \, dx \] ### Step 7: Use substitution Let \( u = 1 - x \), then \( du = -dx \) and \( x = 1 - u \): \[ \int \frac{2(1 - u)}{u^2} (-du) = -2 \int \left( \frac{1}{u} - \frac{1}{u^2} \right) du \] ### Step 8: Integrate This gives: \[ -2 \left( \ln |u| + \frac{1}{u} \right) + C = -2 \left( \ln |1 - x| + \frac{1}{1 - x} \right) + C \] ### Final Result Thus, the integral \( \int f(x) \, dx \) is: \[ -2 \ln(1 - x) + \frac{2}{1 - x} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(a+x)=f(x), then int_(0)^(na) f(x)dx is equal to (n in N)

Let f(x)= lim_(n->oo)(sinx)^(2n)

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

int_n^(n+1)f(x) dx=n^2+n then int_(-1)^1 f(x) dx =

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

Let f : R to R be a real function. The function f is double differentiable. If there exists ninN and p in R such that lim_(x to oo)x^(n)f(x)=p and there exists lim_(x to oo)x^(n+1)f(x) , then lim_(x to oo)x^(n+1)f'(x) is equal to

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to