Home
Class 12
MATHS
Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0...

Let `g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2` m and n integers, `m ne0, n gt0` and. If `underset(xrarr1+)(lim)g(x)=-1`, then

A

`n=1, m=1`

B

`n=1, m-1`

C

`n=2, m=2`

D

`n gt 2, m =n`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=((x-1)^(n))/(logcos^(m)(x-1)),0ltxlt2 m and n integers, m ne0, n gt0 and. If lim_(xrarr1+) g(x)=-1 , then

Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)

Let f(x)=x^(m/n) for x in R where m and n are integers , m even and n odd and 0

If f(x) =[m x^2+n , x 1 . For what integers m and n does both (lim)_(x->1)f(x)dot

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

Let f(x)=lim_(nrarroo) (tan^(-1)(tanx))/(1+(log_(x)x)^(n)),x ne(2n+1)(pi)/(2) then