Home
Class 12
MATHS
If f (x) =2x, g (x) =3 sin x -x cos x, t...

If `f (x) =2x, g (x) =3 sin x -x cos x, then ` for `x in (0, (pi)/(2)):`

A

`f_(1)(x) lt f_(2)(x)`

B

`f_(1)(x) gt f_(2)(x)`

C

`f_(1)(|x|)ltf_(2)(|x|)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If f(x) =4x^2 and g(x) =f(sin x)+f(cos x), then g (23^(@)) is

If f(x)= sin (arctan x), g(x) = tan (arcsin x), and 0 le x lt (pi)/(2) , then f(g((pi)/(10)))=

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x) = |cos x| + |sin x| , then dy/dx at x = (2pi)/3 is equal to

If f(x)=3 cos x and g(x)=sin^(2)x , the evaluate: (f+g)((pi)/(2))

Draw the graph of f(x) " maximum " {2 sin x, 1 - cos x}, x in (0, pi) . Also find the range of g(x) " min " {2 sin x, 1 - cos x}, x in (0, pi)

Find the area bounded by the following curve : (i) f(x) = sinx, g(x) = sin^(2)x, 0 le x le 2pi (ii) f(x) = sinx, g(x) = sin^(4)x, 0 le x le 2pi