Home
Class 12
MATHS
int(dx)/((x+3)^(8//7)(x-2)^(6//7)) is eq...

`int(dx)/((x+3)^(8//7)(x-2)^(6//7))` is equal to

A

`(5)/(7)((x-2)/(x+3))^(1//7)+c`

B

`(7)/(5)((x+3)/(x-2))^(1//7)+c`

C

`(7)/(5)((x-2)/(x+3))^(-1//7)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{(x+3)^{\frac{8}{7}}(x-2)^{\frac{6}{7}}} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{(x+3)^{\frac{8}{7}}(x-2)^{\frac{6}{7}}} \] To simplify the integration, we can multiply and divide the integrand by \( (x-2)^{\frac{8}{7}} \): \[ I = \int \frac{(x-2)^{\frac{8}{7}} \, dx}{(x+3)^{\frac{8}{7}}(x-2)^{\frac{8}{7}}(x-2)^{\frac{6}{7}}} \] This gives us: \[ I = \int \frac{(x-2)^{\frac{8}{7}} \, dx}{(x+3)^{\frac{8}{7}}(x-2)^{\frac{14}{7}}} \] Now we can combine the powers of \( (x-2) \): \[ I = \int \frac{dx}{(x+3)^{\frac{8}{7}}(x-2)^{2}} \] ### Step 2: Substitution Let: \[ t = \frac{x+3}{x-2} \] Then, we differentiate both sides with respect to \( x \): \[ dt = \frac{(x-2)(1) - (x+3)(1)}{(x-2)^2} \, dx = \frac{-5}{(x-2)^2} \, dx \] This implies: \[ dx = -\frac{5}{(x-2)^2} dt \] ### Step 3: Substitute in the Integral Substituting \( dx \) and \( t \) into the integral: \[ I = \int \frac{-\frac{5}{(x-2)^2} dt}{\left(\frac{x+3}{x-2}\right)^{\frac{8}{7}}} \] This simplifies to: \[ I = -5 \int t^{-\frac{8}{7}} dt \] ### Step 4: Integrate Now we can integrate: \[ I = -5 \cdot \left( \frac{t^{-\frac{8}{7}+1}}{-\frac{8}{7}+1} \right) + C \] Calculating \( -\frac{8}{7}+1 = \frac{-8+7}{7} = -\frac{1}{7} \): \[ I = -5 \cdot \left( \frac{t^{-\frac{1}{7}}}{\frac{-1}{7}} \right) + C = 35 t^{-\frac{1}{7}} + C \] ### Step 5: Substitute Back for \( t \) Now substitute back \( t = \frac{x+3}{x-2} \): \[ I = 35 \left(\frac{x-2}{x+3}\right)^{\frac{1}{7}} + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{35 (x-2)^{\frac{1}{7}}}{(x+3)^{\frac{1}{7}}} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int (dx)/((x+a)^(8/7)(x-b)^(6/7))=

int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

int( dx )/( x ( x^(7) +1)) is equal to

int (dx )/(""^(3) sqrt(x ^(5//2) (x+1)^(7//2))) is equal to:

int(1)/((7x-2)^(2))dx

int(x^3-x)/(1+x^6)dx is equal to

Evaluate : int ((x-2))/({(x+3)^(7)(x-2)^(2)}^(1//3))dx

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

int(x^(7//2))/(sqrt(x^(9)))dx equal to