Home
Class 12
MATHS
int(0)^(oo)[2e^(-x)]dx, where [.] deonte...

`int_(0)^(oo)[2e^(-x)]dx`, where `[.]` deontes greatest integer function, is equal to

A

0

B

`ln2`

C

`e^(2)`

D

`2e^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

int_0^oo[3/(x^2+1)]dx, where [.] denotes the greatest integer function, is equal to (A) sqrt2 (B) sqrt2+1 (C) 3/sqrt2 (D) infinite

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

1. int_(0)^(oo)e^(-x/2)dx

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to