Home
Class 12
MATHS
int0^oo[3/(x^2+1)]dx, where [.] denotes ...

`int_0^oo[3/(x^2+1)]dx,` where `[.]` denotes the greatest integer function, is equal to (A) `sqrt2` (B) `sqrt2+1` (C) `3/sqrt2` (D) infinite

A

`sqrt2`

B

`sqrt2+1`

C

`3//sqrt2`

D

infinte

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^\infty \left\lfloor \frac{3}{x^2 + 1} \right\rfloor dx \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we will analyze the behavior of the function \( \frac{3}{x^2 + 1} \) over the interval from \( 0 \) to \( \infty \). ### Step 1: Determine the range of the function \( \frac{3}{x^2 + 1} \) The function \( \frac{3}{x^2 + 1} \) is continuous and decreases as \( x \) increases. - At \( x = 0 \): \[ \frac{3}{0^2 + 1} = 3 \] - As \( x \to \infty \): \[ \frac{3}{x^2 + 1} \to 0 \] Thus, the range of \( \frac{3}{x^2 + 1} \) is \( (0, 3] \). ### Step 2: Identify the integer values of \( \left\lfloor \frac{3}{x^2 + 1} \right\rfloor \) Since \( \frac{3}{x^2 + 1} \) takes values from \( 0 \) to \( 3 \), the possible integer values are \( 0, 1, 2, \) and \( 3 \). ### Step 3: Determine the intervals for each integer value 1. **For \( \left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 3 \)**: \[ \frac{3}{x^2 + 1} \geq 3 \implies x^2 + 1 \leq 1 \implies x^2 \leq 0 \implies x = 0 \] This holds only at \( x = 0 \). 2. **For \( \left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 2 \)**: \[ 2 \leq \frac{3}{x^2 + 1} < 3 \implies 1 < x^2 + 1 \leq 1.5 \implies 0 < x^2 < 1 \implies 0 < x < 1 \] 3. **For \( \left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 1 \)**: \[ 1 \leq \frac{3}{x^2 + 1} < 2 \implies 1.5 < x^2 + 1 < 3 \implies 0.5 < x^2 < 2 \implies \frac{1}{\sqrt{2}} < x < \sqrt{2} \] 4. **For \( \left\lfloor \frac{3}{x^2 + 1} \right\rfloor = 0 \)**: \[ \frac{3}{x^2 + 1} < 1 \implies x^2 + 1 > 3 \implies x^2 > 2 \implies x > \sqrt{2} \] ### Step 4: Set up the integral based on intervals Now we can break the integral into parts based on the intervals we found: \[ \int_0^\infty \left\lfloor \frac{3}{x^2 + 1} \right\rfloor dx = \int_0^1 2 \, dx + \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^\infty 0 \, dx \] ### Step 5: Calculate each integral 1. **First integral**: \[ \int_0^1 2 \, dx = 2[x]_0^1 = 2(1 - 0) = 2 \] 2. **Second integral**: \[ \int_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} 1 \, dx = [x]_{\frac{1}{\sqrt{2}}}^{\sqrt{2}} = \sqrt{2} - \frac{1}{\sqrt{2}} = \sqrt{2} - \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] 3. **Third integral**: \[ \int_{\sqrt{2}}^\infty 0 \, dx = 0 \] ### Step 6: Combine the results Now, summing up the results from the integrals: \[ \int_0^\infty \left\lfloor \frac{3}{x^2 + 1} \right\rfloor dx = 2 + \frac{1}{\sqrt{2}} + 0 = 2 + \frac{1}{\sqrt{2}} \] ### Final Result Thus, the value of the integral is: \[ \int_0^\infty \left\lfloor \frac{3}{x^2 + 1} \right\rfloor dx = \sqrt{2} + 1 \] ### Answer The correct option is (B) \( \sqrt{2} + 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)[2e^(-x)]dx , where [.] deontes greatest integer function, is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

rArrint_(0)^(oo) [(2)/(e^(x))]dx (where [*] denotes the greatest integer function) equals

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to