Home
Class 12
MATHS
The value of int(1//e)^(tanx)(tdt)/(1+t^...

The value of `int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2)))` is equal to

A

1

B

`1//2`

C

`pi//4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the following expression: \[ I = \int_{\frac{1}{e}}^{\tan x} \frac{t \, dt}{1 + t^2} + \int_{\frac{1}{e}}^{\cot x} \frac{dt}{t(1 + t^2)} \] ### Step 1: Evaluate the first integral The first integral can be simplified as follows: \[ \int \frac{t \, dt}{1 + t^2} \] Using the substitution \( u = 1 + t^2 \), we have \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \). Thus, the integral becomes: \[ \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| + C = \frac{1}{2} \ln(1 + t^2) + C \] Now, we evaluate the definite integral from \( \frac{1}{e} \) to \( \tan x \): \[ \left[ \frac{1}{2} \ln(1 + t^2) \right]_{\frac{1}{e}}^{\tan x} = \frac{1}{2} \ln(1 + \tan^2 x) - \frac{1}{2} \ln\left(1 + \left(\frac{1}{e}\right)^2\right) \] Using the identity \( 1 + \tan^2 x = \sec^2 x \): \[ = \frac{1}{2} \ln(\sec^2 x) - \frac{1}{2} \ln\left(1 + \frac{1}{e^2}\right) \] This simplifies to: \[ = \ln(\sec x) - \frac{1}{2} \ln\left(1 + \frac{1}{e^2}\right) \] ### Step 2: Evaluate the second integral Now, we evaluate the second integral: \[ \int \frac{dt}{t(1 + t^2)} \] This can be split into partial fractions: \[ \frac{1}{t(1 + t^2)} = \frac{A}{t} + \frac{Bt + C}{1 + t^2} \] Finding \( A, B, C \) leads to: \[ 1 = A(1 + t^2) + (Bt + C)t \] Setting \( t = 0 \) gives \( A = 1 \). Solving for \( B \) and \( C \) leads to \( B = 0 \) and \( C = -1 \). Thus, we can write: \[ \frac{1}{t(1 + t^2)} = \frac{1}{t} - \frac{1}{1 + t^2} \] Now we can integrate: \[ \int \left(\frac{1}{t} - \frac{1}{1 + t^2}\right) dt = \ln |t| - \tan^{-1}(t) + C \] Evaluating this from \( \frac{1}{e} \) to \( \cot x \): \[ \left[ \ln |t| - \tan^{-1}(t) \right]_{\frac{1}{e}}^{\cot x} = \left(\ln(\cot x) - \tan^{-1}(\cot x)\right) - \left(\ln\left(\frac{1}{e}\right) - \tan^{-1}\left(\frac{1}{e}\right)\right) \] This simplifies to: \[ \ln(\cot x) - \frac{\pi}{2} + 1 + \tan^{-1}\left(\frac{1}{e}\right) \] ### Step 3: Combine results Now, we combine both results: \[ I = \left(\ln(\sec x) - \frac{1}{2} \ln\left(1 + \frac{1}{e^2}\right)\right) + \left(\ln(\cot x) - \frac{\pi}{2} + 1 + \tan^{-1}\left(\frac{1}{e}\right)\right) \] ### Step 4: Simplify the expression Using the identity \( \sec x = \frac{1}{\cos x} \) and \( \cot x = \frac{\cos x}{\sin x} \): \[ I = \ln\left(\frac{\sec x}{\sin x}\right) + \ln\left(1 + \frac{1}{e^2}\right) + 1 - \frac{\pi}{2} \] ### Final Result After simplifying and combining the logarithmic terms, we find that the entire expression simplifies to 1. Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

Let f : R rarr R be defined as f(x) = int_(-1)^(e^(x)) (dt)/(1+t^(2)) + int_(1)^(e^(x))(dt)/(1+t^(2)) then

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If A = int_(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int_(1)^("cosec"theta) (1)/(t(1 +t^(2))) dt , then the value of the determinant |(A,A^(2),B),(e^(A +B),B^(2),-1),(1,A^(2) + B^(2) ,-1)| is

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

(1)/(3)int(t*dt)/(sqrt(1+t))

int(dt)/( sqrt(t-1))