Home
Class 12
MATHS
If int(pi/2)^x sqrt(3-2sin^2) tdt+ int0^...

If `int_(pi/2)^x sqrt(3-2sin^2) tdt+ int_0^y costdt=0,` then `(dy/dx)at x =pi and y=pi` is

A

`sqrt3`

B

`-sqrt2`

C

`-sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given the equation: \[ \int_{\frac{\pi}{2}}^{x} \sqrt{3 - 2\sin^2 t} \, dt + \int_{0}^{y} \cos t \, dt = 0 \] ### Step 1: Differentiate both sides with respect to \(x\) Using Leibniz's rule for differentiation under the integral sign, we differentiate both integrals: \[ \frac{d}{dx} \left( \int_{\frac{\pi}{2}}^{x} \sqrt{3 - 2\sin^2 t} \, dt \right) + \frac{d}{dx} \left( \int_{0}^{y} \cos t \, dt \right) = 0 \] ### Step 2: Apply Leibniz's rule For the first integral, we have: \[ \frac{d}{dx} \left( \int_{\frac{\pi}{2}}^{x} \sqrt{3 - 2\sin^2 t} \, dt \right) = \sqrt{3 - 2\sin^2 x} \] For the second integral, we apply the chain rule: \[ \frac{d}{dx} \left( \int_{0}^{y} \cos t \, dt \right) = \cos y \cdot \frac{dy}{dx} \] ### Step 3: Set up the equation Combining these results, we get: \[ \sqrt{3 - 2\sin^2 x} + \cos y \cdot \frac{dy}{dx} = 0 \] ### Step 4: Solve for \(\frac{dy}{dx}\) Rearranging the equation gives: \[ \cos y \cdot \frac{dy}{dx} = -\sqrt{3 - 2\sin^2 x} \] Thus, \[ \frac{dy}{dx} = -\frac{\sqrt{3 - 2\sin^2 x}}{\cos y} \] ### Step 5: Evaluate at \(x = \pi\) and \(y = \pi\) Now, we need to evaluate \(\frac{dy}{dx}\) at \(x = \pi\) and \(y = \pi\): 1. Calculate \(\sqrt{3 - 2\sin^2 \pi}\): - \(\sin \pi = 0\) so \(\sqrt{3 - 2(0)} = \sqrt{3}\) 2. Calculate \(\cos \pi\): - \(\cos \pi = -1\) Substituting these values into the expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = -\frac{\sqrt{3}}{-1} = \sqrt{3} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \pi\) and \(y = \pi\) is: \[ \frac{dy}{dx} = \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sin^(2) x dx

int_(0)^(pi) x sin^(2) x dx

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2) sin ^(4) x dx

int_(-pi/2)^(pi/2) |sin x| dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^(pi) x sin x cos^(2)x\ dx