Home
Class 12
MATHS
If f(x)=ae^(2x)+be^x+cx satisfies the co...

If `f(x)=ae^(2x)+be^x+cx` satisfies the conditions `f(0)=-1, f\'log(2)=28, int_0^(log4) [f(x)-cx]dx=39/2`, then
(A) `a=5, b=6, c=3`
(B) `a=5, b=-6, c=0`
(C) `a=-5, b=6, c=3`
(D) none of these

A

`a=-5, b=6, c=3`

B

`a=5, b=-6, c=3`

C

`a=-5, b=6, c=3`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =ae^(2x)+be^(x)+cx , satisfies the conditions f(0)=-1, f'(log 2)=31, int_(0)^(log4) (f(x)-cx)dx=(39)/(2) , then

If f(x)=x^3+bx^2+cx+d and 0< b^2 < c , then

If the function f(x)=a x^3+b x^2+11 x-6 satisfies conditions of Rolles theorem in [1,3] and f'(2+1/(sqrt(3)))=0, then values of a and b , respectively, are (A) -3,2 (B) 2,-4 (C) 1,-6 (D) none of these

If f(x) = a + bx + cx^2 where a, b, c in R then int_o ^1 f(x)dx

If intf(x)*cosxdx=1/2{f(x)}^2+c , then f(0)= (A) 1 (B) 0 (C) -1 (D) none of these

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

If f(x) satisfies the condition of Rolle's theorem in [1,2] , then int_1^2 f'(x) dx is equal to (a) 1 (b) 3 (c) 0 (d) none of these

If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal to 0 (b) -1/(14) (c) -1/4 (d) None of these

If f(x)=f(x)={(sin(a+1)x+sinx)/(x), ,x<0,c \ at x=0, (sqrt(x+b x^2)-sqrt(x))/(b xsqrt(x)),xgeq0,f(x) is continuous at x=0,t h e n (a). a=-3/2,b=0,c=1/2 (b) a=-3/2,b=1,c=-1/2 (c) a=-3/2,b in R-[0],c=1/2 (d) none of these