Home
Class 12
MATHS
7(int0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is e...

`7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi)` is equal to

A

21

B

22

C

23

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ 7\left(\frac{\int_0^1 x^4(1-x)^4 \, dx}{1+x^2} + \pi\right) \] ### Step 1: Evaluate the integral \( \int_0^1 x^4(1-x)^4 \, dx \) Using the binomial expansion, we can express \( (1-x)^4 \): \[ (1-x)^4 = \sum_{k=0}^{4} \binom{4}{k} (-x)^k = 1 - 4x + 6x^2 - 4x^3 + x^4 \] Now, we can write: \[ x^4(1-x)^4 = x^4(1 - 4x + 6x^2 - 4x^3 + x^4) = x^4 - 4x^5 + 6x^6 - 4x^7 + x^8 \] Thus, we have: \[ \int_0^1 x^4(1-x)^4 \, dx = \int_0^1 (x^4 - 4x^5 + 6x^6 - 4x^7 + x^8) \, dx \] ### Step 2: Compute the integral term by term Calculating each term: 1. \( \int_0^1 x^4 \, dx = \frac{x^5}{5} \bigg|_0^1 = \frac{1}{5} \) 2. \( \int_0^1 4x^5 \, dx = 4 \cdot \frac{x^6}{6} \bigg|_0^1 = \frac{4}{6} = \frac{2}{3} \) 3. \( \int_0^1 6x^6 \, dx = 6 \cdot \frac{x^7}{7} \bigg|_0^1 = \frac{6}{7} \) 4. \( \int_0^1 4x^7 \, dx = 4 \cdot \frac{x^8}{8} \bigg|_0^1 = \frac{4}{8} = \frac{1}{2} \) 5. \( \int_0^1 x^8 \, dx = \frac{x^9}{9} \bigg|_0^1 = \frac{1}{9} \) Now, substituting back into the integral: \[ \int_0^1 x^4(1-x)^4 \, dx = \frac{1}{5} - \frac{2}{3} + \frac{6}{7} - \frac{1}{2} + \frac{1}{9} \] ### Step 3: Find a common denominator and simplify The common denominator for \( 5, 3, 7, 2, 9 \) is \( 630 \). Calculating each term: - \( \frac{1}{5} = \frac{126}{630} \) - \( \frac{2}{3} = \frac{420}{630} \) - \( \frac{6}{7} = \frac{540}{630} \) - \( \frac{1}{2} = \frac{315}{630} \) - \( \frac{1}{9} = \frac{70}{630} \) Now substituting these values: \[ \int_0^1 x^4(1-x)^4 \, dx = \frac{126 - 420 + 540 - 315 + 70}{630} = \frac{1}{630} \] ### Step 4: Substitute back into the original expression Now we substitute this back into our original expression: \[ 7\left(\frac{\frac{1}{630}}{1+x^2} + \pi\right) \] ### Step 5: Simplify the expression The expression simplifies to: \[ 7\left(\frac{1}{630(1+x^2)} + \pi\right) \] ### Final Result Thus, the final answer is: \[ \frac{7}{630(1+x^2)} + 7\pi \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^1d/(dx){sin^(-1)((2x)/(1+x^2))}dx is equal to 0 (b) pi (c) pi//2 (d) pi//4

int((x4-x)^(1//4))/(x^(5))dx is equal to

int_(0)^(1) ( x^(4) + 1)/( x^(2) + 1) dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

lim(x->0)(1/(x^5)int_0^xe^(-t^2)dt-1/(x^4)+1/(3x^2)) is equal to

The value of int_0^1(x^4(1-x)^4)/(1+x^2)\ dx is

int(x^(4)+1)/(x^(6)+1)dx is equal to

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

The value of int_0^1(x^4(1-x)^4)/(1+x^2)dx is/are (a) (22)/7-pi (b) 2/(105) (c) 0 (d) (71)/(15)-(3pi)/2

int( dx )/( x ( x^(7) +1)) is equal to