Home
Class 12
MATHS
int(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(...

`int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx` is equal to `(pi^2)/6` (b) `(pi^2)/3` (c) `(pi^2)/8` (d) `(3pi^2)/8`

A

`(pi^(2))/(6)`

B

`(pi^(2))/(3)`

C

`(pi^(2))/(8)`

D

`(3pi^(2))/(8)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/3)^0[cot^(-1)(2/(2cosx-1))+cot^(-1)(cosx-1/2)]dx i s equal to (pi^2)/6 (b) (pi^2)/3 (c) (pi^2)/8 (d) (3pi^2)/8

int_0^21/(1+tanx)dx is equal to (pi^)/4 (b) (pi^)/3 (c) (pi^)/2 (d) pi

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

int_(0)^(pi)|1+2cosx| dx is equal to :

int_0^pi||sinx|-|cosx||dx is equal to (a) tan((3pi)/8) (b) tan(pi/8) (c) 4 tan(pi/8) (d) 2 tan((3pi)/8)

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx