Home
Class 12
MATHS
If k be positive integer , then the numb...

If k be positive integer , then the number of values of k satisfying `int_0^(pi/2)[k^2(cos3x+1/2cosx)+sinx-2kcosx]dxlt=1` is

A

10

B

11

C

12

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral and find the number of positive integer values of \( k \) that satisfy the inequality: \[ \int_0^{\frac{\pi}{2}} \left[ k^2 \left( \cos(3x) + \frac{1}{2} \cos(x) \right) + \sin(x) - 2k \cos(x) \right] dx < 1 \] ### Step 1: Break down the integral We can rewrite the integral as: \[ \int_0^{\frac{\pi}{2}} \left[ k^2 \cos(3x) + \frac{k^2}{2} \cos(x) + \sin(x) - 2k \cos(x) \right] dx \] ### Step 2: Evaluate each term separately 1. **Integral of \( k^2 \cos(3x) \)**: \[ \int_0^{\frac{\pi}{2}} k^2 \cos(3x) \, dx = k^2 \left[ \frac{\sin(3x)}{3} \right]_0^{\frac{\pi}{2}} = k^2 \left( \frac{\sin\left(\frac{3\pi}{2}\right) - \sin(0)}{3} \right) = k^2 \left( \frac{-1 - 0}{3} \right) = -\frac{k^2}{3} \] 2. **Integral of \( \frac{k^2}{2} \cos(x) \)**: \[ \int_0^{\frac{\pi}{2}} \frac{k^2}{2} \cos(x) \, dx = \frac{k^2}{2} \left[ \sin(x) \right]_0^{\frac{\pi}{2}} = \frac{k^2}{2} (1 - 0) = \frac{k^2}{2} \] 3. **Integral of \( \sin(x) \)**: \[ \int_0^{\frac{\pi}{2}} \sin(x) \, dx = \left[ -\cos(x) \right]_0^{\frac{\pi}{2}} = -\cos\left(\frac{\pi}{2}\right) + \cos(0) = 0 + 1 = 1 \] 4. **Integral of \( -2k \cos(x) \)**: \[ \int_0^{\frac{\pi}{2}} -2k \cos(x) \, dx = -2k \left[ \sin(x) \right]_0^{\frac{\pi}{2}} = -2k (1 - 0) = -2k \] ### Step 3: Combine the results Now combine all the evaluated integrals: \[ -\frac{k^2}{3} + \frac{k^2}{2} + 1 - 2k \] ### Step 4: Simplify the expression To combine the terms involving \( k^2 \): \[ -\frac{k^2}{3} + \frac{k^2}{2} = \frac{-2k^2 + 3k^2}{6} = \frac{k^2}{6} \] Thus, the entire expression becomes: \[ \frac{k^2}{6} + 1 - 2k \] ### Step 5: Set up the inequality Now we need to satisfy the inequality: \[ \frac{k^2}{6} + 1 - 2k < 1 \] Subtracting 1 from both sides gives: \[ \frac{k^2}{6} - 2k < 0 \] ### Step 6: Factor the inequality Multiplying through by 6 (since 6 is positive, the inequality direction remains unchanged): \[ k^2 - 12k < 0 \] Factoring out \( k \): \[ k(k - 12) < 0 \] ### Step 7: Determine the intervals The critical points are \( k = 0 \) and \( k = 12 \). The inequality \( k(k - 12) < 0 \) is satisfied in the interval: \[ 0 < k < 12 \] ### Step 8: Find positive integer solutions The positive integer values of \( k \) that satisfy this inequality are: \[ k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 \] ### Conclusion Thus, there are **11 positive integer values** of \( k \) that satisfy the given inequality.
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) cosx/(1+sinx)dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate: int_0^(pi//2)(cosx)/(1+cosx+sinx)dx

Evaluate: int_0^(pi/2) cos^2x/(2+sinx+cosx)dx

Find the value of the following: int_0^(pi/4) (1+sin2x)/(cosx+sinx)dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

The value of int_(0)^(pi//2)(cosxdx)/(1+cosx+sinx) is equal to

The value of I=int_(0)^(pi)x(sin^(2)(sinx)+cos^(2)(cosx))dx is

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx