Home
Class 12
MATHS
If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"...

If `(1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+"......."" upto "oo=(pi^(2))/(6)`, find
(i) `(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+"......."" upto "oo`
(ii) `1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+"......."" upto "oo`.

A

`(pi^(2))/(12)`

B

`(pi^(2))/(8)`

C

`(pi^(2))/(9)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

1/(2!)-1/(3!)+1/(4!) .....oo =

1/(2^2)tan(pi/(2^2))+1/(2^3)tan(pi/(2^3))+.... to oo

Find (1)/(3)+(1)/(2.3^(2))+(1)/(3.3^(3))+(1)/(4.3^(4))+….oo=?

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+(1)/(4^(2))+……+ oo=(pi^(2))/(6) and int_(0)^(1)(ln (l+x))/(x)dx=(3pi^(2))/(k) then k equals :

(1+1/3.(1)/(2^(2))+1/5.(1)/(2^(4))+1/7(1)/2^(6)+…..oo) =

1 + (1+2)/(2!) + (1+2+3)/(3!) + (1+2+3+4)/(4!) + ......oo

((y-1)-(1)/(2)(y-1)^(2)+(1)/(3)(y-1)^(3)-....oo)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-....oo)=

1/2+1/4 +1/(8(2)!)+1/(16(3)!)+1/(32(4)!)+ .....oo =

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =