Home
Class 12
MATHS
Value of (1^2)/1+(1^2+2^2)/(1+2)+(1^2+2^...

Value of `(1^2)/1+(1^2+2^2)/(1+2)+(1^2+2^2+3^2)/(1+2+3)+.... 'n'` terms is equal to

A

`(2n^(2))/(n+1)`

B

`(n(n+2))/(3)`

C

`(4n^(2))/(3n+2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S_n = \frac{1^2}{1} + \frac{1^2 + 2^2}{1 + 2} + \frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} + \ldots + \frac{1^2 + 2^2 + \ldots + n^2}{1 + 2 + \ldots + n} \] ### Step 1: Identify the general term The general term in the series can be expressed as: \[ T_r = \frac{1^2 + 2^2 + \ldots + r^2}{1 + 2 + \ldots + r} \] ### Step 2: Use formulas for sums We know the formulas for the sum of the first \( r \) squares and the sum of the first \( r \) natural numbers: 1. The sum of the first \( r \) squares: \[ 1^2 + 2^2 + \ldots + r^2 = \frac{r(r + 1)(2r + 1)}{6} \] 2. The sum of the first \( r \) natural numbers: \[ 1 + 2 + \ldots + r = \frac{r(r + 1)}{2} \] ### Step 3: Substitute the formulas into \( T_r \) Substituting these formulas into \( T_r \): \[ T_r = \frac{\frac{r(r + 1)(2r + 1)}{6}}{\frac{r(r + 1)}{2}} \] ### Step 4: Simplify \( T_r \) Now, we simplify \( T_r \): \[ T_r = \frac{r(r + 1)(2r + 1)}{6} \cdot \frac{2}{r(r + 1)} = \frac{2r + 1}{3} \] ### Step 5: Sum up all terms Now, we need to sum \( T_r \) from \( r = 1 \) to \( n \): \[ S_n = \sum_{r=1}^{n} T_r = \sum_{r=1}^{n} \frac{2r + 1}{3} \] ### Step 6: Factor out the constant Factoring out \( \frac{1}{3} \): \[ S_n = \frac{1}{3} \sum_{r=1}^{n} (2r + 1) = \frac{1}{3} \left( 2 \sum_{r=1}^{n} r + \sum_{r=1}^{n} 1 \right) \] ### Step 7: Calculate the sums We know: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] and \[ \sum_{r=1}^{n} 1 = n \] Substituting these into the equation: \[ S_n = \frac{1}{3} \left( 2 \cdot \frac{n(n + 1)}{2} + n \right) \] ### Step 8: Simplify further This simplifies to: \[ S_n = \frac{1}{3} \left( n(n + 1) + n \right) = \frac{1}{3} \left( n^2 + 2n \right) \] ### Step 9: Final expression Thus, we can write: \[ S_n = \frac{n(n + 2)}{3} \] ### Final Answer: The value of the given expression for \( n \) terms is: \[ \boxed{\frac{n(n + 2)}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The sum up to 60 terms of 3/(1^2) + 5/(1^2 + 2^2) + 7/(1^2 + 2^2 + 3^2) + ……. is equal to

the sum 3/1^2+5/(1^2+2^2)+7/(1^2+2^2+3^2)+....... upto 11 terms

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

1/(1.2)+1/(2.3)+1/(3.4)+... to n terms

Value of 1+1/(1+2)+1/(1+2+3)+....+1/(1+2+3+....+n) is equal to

1.1!+2.2!+3.3!+.......n.n! is equal to

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

Value of 1/(r_(1)^2)'+ 1/(r_(2)^2)+ 1/(r_(3)^2)+ 1/(r_()^2) is :

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

If 1/1^3 + (1+2)/(1^3+2^3)+(1+2+3)/(1^3+2^3+3^3) +.......n terms then lim_(n->oo) [S_n]