Home
Class 12
MATHS
If k sin^(2)x+(1)/(k) cosec^(2) x=2, x i...

If k `sin^(2)x+(1)/(k) cosec^(2) x=2, x in (0,(pi)/(2)),`
then `cos^(2)x+5sinxcosx+6sin^(2)x` is equal to

A

`(k^(2)+5k+6)/(k^(2))`

B

`(k^(2)-5k+6)/(k^(2))`

C

6

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

int_(0)^(pi//2) ( cos x - sin x )/( 2 + sin x cos x ) dx is equal to

If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

Solve 2sin^(2)x-5sinxcosx-8cos^2x=-2

If log_(sinx)(cos x) = (1)/(2) , where x in (0, (pi)/(2)) , then the value of sin x is equal to-

int_(0)^(pi//2) ( sin x cos x )/( 1+ sin x ) dx is equal to

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to