Home
Class 12
MATHS
Domain of the function f(x)=(1)/([sinx-1...

Domain of the function `f(x)=(1)/([sinx-1])` (where [.] denotes the greatest integer function) is

A

`R~{2npi+(pi)/(2), n in l}`

B

`R~{npi+(pi)/(2), n in l)}`

C

`[2n pi, 2npi+(pi)/(2)]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{[\sin x - 1]} \), where \([\cdot]\) denotes the greatest integer function, we need to determine when the denominator is defined and non-zero. ### Step-by-Step Solution: 1. **Identify when the denominator is zero**: The function \( f(x) \) is undefined when the denominator \( [\sin x - 1] = 0 \). Therefore, we need to find when \( \sin x - 1 = 0 \). \[ \sin x - 1 = 0 \implies \sin x = 1 \] 2. **Find the values of \( x \) where \( \sin x = 1 \)**: The sine function equals 1 at specific points. The general solution for \( \sin x = 1 \) is: \[ x = \frac{\pi}{2} + 2n\pi \quad \text{for } n \in \mathbb{Z} \] This means that \( f(x) \) is undefined at these points. 3. **Determine the domain**: Since \( f(x) \) is defined for all real numbers except where \( \sin x = 1 \), the domain of \( f(x) \) can be expressed as: \[ \text{Domain of } f(x) = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + 2n\pi \mid n \in \mathbb{Z} \right\} \] ### Final Answer: The domain of the function \( f(x) = \frac{1}{[\sin x - 1]} \) is: \[ \mathbb{R} - \left\{ 2n\pi + \frac{\pi}{2} \mid n \in \mathbb{Z} \right\} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

Find the domain of function f(x)=(1)/(abs(x-1)+abs(7-x)-6) where [*] denotes the greatest integral function .

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Write the piecewise definition of the function: f(x)= [sqrt(x)] , where [.] denotes the greatest integer function.

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function