Home
Class 12
MATHS
int((lnx-1)/((lnx)^(2)+1))^2dx is equal ...

`int((lnx-1)/((lnx)^(2)+1))^2dx` is equal to

A

`(x)/(x^(2)+1)+C`

B

`(lnx)/((lnx)^(2)+1)`

C

`(x)/((lnx)^(2)+1)+C`

D

`e^(x)((x)/(x^(2)+1))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \frac{\ln x - 1}{(\ln x)^2 + 1} \right)^2 dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \left( \frac{\ln x - 1}{(\ln x)^2 + 1} \right)^2 dx \] ### Step 2: Expand the Numerator We can expand the square in the numerator: \[ I = \int \frac{(\ln x - 1)^2}{((\ln x)^2 + 1)^2} dx \] Expanding \((\ln x - 1)^2\) gives: \[ (\ln x - 1)^2 = (\ln x)^2 - 2 \ln x + 1 \] Thus, \[ I = \int \frac{(\ln x)^2 - 2 \ln x + 1}{((\ln x)^2 + 1)^2} dx \] ### Step 3: Separate the Integral We can separate the integral into three parts: \[ I = \int \frac{(\ln x)^2}{((\ln x)^2 + 1)^2} dx - 2 \int \frac{\ln x}{((\ln x)^2 + 1)^2} dx + \int \frac{1}{((\ln x)^2 + 1)^2} dx \] ### Step 4: Substitution Let \( t = \ln x \). Then \( dx = e^t dt \) and \( \ln x = t \). The integral becomes: \[ I = \int \frac{t^2 e^t}{(t^2 + 1)^2} dt - 2 \int \frac{t e^t}{(t^2 + 1)^2} dt + \int \frac{e^t}{(t^2 + 1)^2} dt \] ### Step 5: Factor Out \( e^t \) Now, we can factor out \( e^t \): \[ I = e^t \left( \int \frac{t^2}{(t^2 + 1)^2} dt - 2 \int \frac{t}{(t^2 + 1)^2} dt + \int \frac{1}{(t^2 + 1)^2} dt \right) \] ### Step 6: Recognize the Form Notice that the integrals can be recognized as derivatives: Let \( f(t) = \frac{1}{1 + t^2} \). Then: \[ f'(t) = -\frac{2t}{(1 + t^2)^2} \] This gives us a relationship between the integrals. ### Step 7: Apply Integration by Parts Using integration by parts or recognizing the pattern, we can integrate: \[ \int e^t f(t) dt = e^t f(t) + C \] ### Step 8: Substitute Back Substituting back \( t = \ln x \): \[ I = e^{\ln x} \left( \frac{1}{1 + (\ln x)^2} \right) + C = \frac{x}{1 + (\ln x)^2} + C \] ### Final Answer Thus, the solution to the integral is: \[ I = \frac{x}{1 + (\ln x)^2} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

int {((lnx-1))/(1+(lnx)^2)}^2 dx is equal to

int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

int x ^(x)((ln x )^(2) +lnx+1/x) dx is equal to:

int(1)/(x(1+root(3)(x))^(2))dx is equal to