Home
Class 12
MATHS
The value of int(cos^(3)x)/(sin^(2)x+sin...

The value of `int(cos^(3)x)/(sin^(2)x+sinx)dx` is equal to

A

`log sin x-sinx+C`

B

`log|sinx|-sinx+C`

C

`log|sinx|+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int (cos^3x+cos^5)/(sin^2x+sin^4x)dx

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

If int_(0)^(oo)(sinx)/(x)dx=k , then the value of int_(0)^(oo)(sin^(3)x)/(x)dx is equal to

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

Evaluate: int(cos^3x)/(sin^2x+sinx)dx

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int(cos2x)/((sinx+cosx)^(2))dx is equal to

int(dx)/( sin^(2)x cos^(2)x) is equal to

l=int(sin2x)/(8sin^(2)x+17cos^(2)x)dx is equal to