Home
Class 12
MATHS
int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(p...

`int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx` is equal to

A

`e^(x)tan((pi)/(4)-x)+C`

B

`e^(x)tan(x-(pi)/(4))+C`

C

`e^(x)tan((3pi)/(4)-x)+C`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^x((2tanx)/(1+tanx)+cot^2(x+pi/4))dxi se q u a lto e^xtan(pi/4-x)+c e^xtan(x-pi/4)+c e^xtan((3pi)/4-x)+c (d) none of these

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx equals to

int_0^pi tanx/(sinx+tanx)dx

inte^(-x)(1-tanx)secx dx is equal to

int_(0)^(pi//2)(dx)/(1+tanx) is

The value of int(xtanxsecx)/((tanx-x)^(2))dx is equal to

int(sec^(2)x)/(sqrt(tanx))dx

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to