Home
Class 12
MATHS
The range of the function f(x)=1/abs(s...

The range of the function
`f(x)=1/abs(sinx)+1/abs(cosx)` is

A

`[2, sqrt2, oo)`

B

`(sqrt2, 2sqrt2)`

C

`(0, 2sqrt2)`

D

`(2sqrt2, 4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The period of f(x)=cos(abs(sinx)-abs(cosx)) is

The extremum values of the function f(x)=1/(sinx+ 4)-1/ (cosx-4) , where x in R

Find the period of f(x)=abs(sinx)+abs(cosx) .

The range of the function f(x)=cos^(2)x -5 cosx -9 is :

Range of the function f(x)=sqrt(abs(sin^(-1)abs(sinx))-abs(cos^(-1)abs(cosx))) is

The domain of the function f(x)=sqrt(log_(sinx+cosx)(abs(cosx)+cosx)), 0 le x le pi is

Find the range of the function " " f(x)=(sin^(2)x+sinx-1)/(sin^(2)x-sinx+2) .

The domain of the function f(x)=sqrt(abs(sin^(-1)(sinx))-cos^(-1)(cosx)) in [0,2pi] is

Find the periods (if periodic) of the following functions, where [.] denotes the greatest integer function f(x)=(abs(sinx+cosx))/(abs(sinx)+abs(cosx))

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is