Home
Class 12
MATHS
Consider the integrals I(1)=overset(1)...

Consider the integrals
`I_(1)=overset(1)underset(0)inte^(-x)cos^(2)xdx,I_(2)=overset(1)underset(0)int e^(-x^(2))cos^(2)x dx,I_(3)=overset(1)underset(0)int e^(-x^(2//2))cos^(2)xdx`
and `I_(4)=overset(1)underset(0)int e^(-x^(2//2))dx`. The greatest of these integrals, is

A

`l_(1) gt l_(2) le l_(3) le l_(4)`

B

`l_(1) gt l_(2) gt l_(3) lt l_(4)`

C

`l_(1)gt l_(2) le l_(3) gt l_(4)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=overset(1)underset(0)int 2^(x^(2)) dx, I_(2)=overset(1)underset(0)int 2^(x^(3)) dx, I_(3)=overset(2)underset(1)int 2^(x^(2))dx and I_(4)=overset(2)underset(1)int 2^(x^(3))dx then

If I=overset(1)underset(0)int (1)/(1+x^(pi//2))dx then

The value of the integral overset(1)underset(0)int e^(x^(2))dx lies in the integral

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-(1//2)x^(2))dx . The greatest of these integrals, is

Let overset(a)underset(0)int f(x)dx=lambda and overset(a)underset(0)int f(2a-x)dx=mu . Then, overset(2a)underset(0)int f(x) dx equal to

The value of the integral overset(pi)underset(0)int log(1+cos x)dx is

(i) int_(0)^( pi)x cos^(2)xdx

If overset(4)underset(-1)int f(x)=4 and overset(4)underset(2)int (3-f(x))dx=7 , then the value of overset(-1)underset(2)int f(x)dx , is

The value of overset(sin^(2)x)underset(0)int sin^(-1)sqrt(t)dt+overset(cos^(2)x)underset(0)int cos^(-1)sqrt(t)dt , is

Given overset(2)underset(1)inte^(x^(2))dx=a , the value of overset(e^(4))underset(e )int sqrt(log_(e )x)dx , is