Home
Class 12
MATHS
Let f be a positive function. Let I1=in...

Let `f` be a positive function. Let `I_1=int_(1-k)^k xf([x(1-x)]dx ,` `I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s` 2 (b) `k` (c) `1/2` (d) 1

A

k

B

`k-1`

C

`k//2`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a positive function. If I_1 = int_(1-k)^k x f[x(1-x)]\ dx and I_2 = int_(1-k)^k f[x(1-x)]\ dx, where 2k-1 gt 0. Then I_1/I_2 is

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

"I f"I_1=int_0^1prod_(r=1)^(2016)(r-x)dxa n dI_2=int_0^1prod_(r=0)^(2015)(r+x)dx ,t h e n(I_1)/(I_2) is equal to 2 (b) 1/2 (c) -1 (d) 1

If f(x)=(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a))xg(x(1-x)dx and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx , then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" 2 (b) 1/2 (c) 1 (d) -1/2

For x in R and a continuous function f, let I_1=int_(sin^2t)^(1+cos^2t)xf{x(2-x)}dx and I_2=int_(sin^2t)^(1+cos^2t)f{x(2-x)}dx .Then (I_1)/(I_2) is (a) -1 (b) 1 (c) 2 (d) 3

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If f(x) =(e^x)/(1+e^x), I_1=int_(f(-a))^(f(a)) xg(x(1-x))dx , and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2