Home
Class 12
MATHS
int dx/sqrt(x+xsqrtx) equals...

`int dx/sqrt(x+xsqrtx)` equals

A

`logsqrt(x+sqrtxsqrtx)+c`

B

`sqrt(1+sqrtx)+c`

C

`4sqrt(1+sqrtx)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sqrt{x + x \sqrt{x}}} \), we can follow these steps: ### Step 1: Simplify the integrand First, we simplify the expression inside the square root: \[ x + x \sqrt{x} = x(1 + \sqrt{x}) \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\sqrt{x(1 + \sqrt{x})}} \] ### Step 2: Factor out \(\sqrt{x}\) Next, we can factor out \(\sqrt{x}\) from the square root: \[ \sqrt{x(1 + \sqrt{x})} = \sqrt{x} \cdot \sqrt{1 + \sqrt{x}} \] This gives us: \[ I = \int \frac{dx}{\sqrt{x} \sqrt{1 + \sqrt{x}}} \] ### Step 3: Substitute \( t = 1 + \sqrt{x} \) Now, let's make the substitution \( t = 1 + \sqrt{x} \). Then, we have: \[ \sqrt{x} = t - 1 \quad \text{and} \quad x = (t - 1)^2 \] Differentiating both sides gives: \[ dx = 2(t - 1) dt \] ### Step 4: Substitute in the integral Substituting \( \sqrt{x} \) and \( dx \) into the integral: \[ I = \int \frac{2(t - 1) dt}{(t - 1) \sqrt{1 + \sqrt{x}}} \] Since \( \sqrt{1 + \sqrt{x}} = \sqrt{t} \), we can rewrite the integral: \[ I = \int \frac{2 dt}{\sqrt{t}} \] ### Step 5: Integrate Now, we can integrate: \[ I = 2 \int t^{-1/2} dt = 2 \cdot 2 t^{1/2} + C = 4 \sqrt{t} + C \] ### Step 6: Substitute back for \( t \) Substituting back for \( t \): \[ I = 4 \sqrt{1 + \sqrt{x}} + C \] Thus, the final result is: \[ \int \frac{dx}{\sqrt{x + x \sqrt{x}}} = 4 \sqrt{1 + \sqrt{x}} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int x sqrt(x)dx=

int (2xsqrtx)/5 dx

int(dx)/(sqrt(x-x^(2))) equal is :

int (1)/(sqrt(x)) dx

int sqrt(1+cosecx) dx equals

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

int sqrt(1+secx) dx is equal to:

int( dx)/(sqrt(x+a)+sqrt(x+b))

inte^(sqrt(x))dx is equal to

int sqrt((x)/( 1-x))dx is equal to