Home
Class 12
MATHS
The maximum value of (logx)// x is 1 (b...

The maximum value of `(logx)//` x is `1` (b) `2/e` `e` (d) `1/e`

A

1

B

`(2)/(e )`

C

e

D

`(1)/(e )`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of (logx)/x is (a) 1 (b) 2/e (c) e (d) 1/e

The minimum value of x\ (log)_e x is equal to e (b) 1//e (c) -1//e (d) 2e (e) e

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

Show that the maximum value of (1/x)^x is e^(1//e) .

Show that the maximum value of (1/x)^x is e^(1/e)dot

Show that the maximum value of (1/x)^x is e^(1//e) .

The maximum value of x^4e^ (-x^2) is (A) e^2 (B) e^(-2) (C) 12 e^(-2) (D) 4e^(-2)

The minimum value of e^((2x^2-2x+1)sin^(2)x) is a. e (b) 1/e (c) 1 (d) 0