Home
Class 12
MATHS
lim(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(...

`lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x))` equals

A

`pi`

B

`-pi`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\cot\left(\frac{\pi}{2} \sin^2 x\right)} \), we can follow these steps: ### Step 1: Rewrite the cotangent function The cotangent function can be rewritten in terms of sine and cosine: \[ \cot\left(\frac{\pi}{2} \sin^2 x\right) = \frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\sin\left(\frac{\pi}{2} \sin^2 x\right)} \] ### Step 2: Substitute into the limit Now, we can substitute this back into our limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\sin\left(\frac{\pi}{2} \sin^2 x\right)}} \] This simplifies to: \[ \lim_{x \to \frac{\pi}{2}} \sin\left(\frac{\pi}{2} \sin^2 x\right) \] ### Step 3: Evaluate \(\sin^2 x\) as \(x\) approaches \(\frac{\pi}{2}\) As \(x\) approaches \(\frac{\pi}{2}\), we have: \[ \sin^2 x \to \sin^2\left(\frac{\pi}{2}\right) = 1 \] ### Step 4: Substitute into the sine function Now substituting this into the sine function: \[ \sin\left(\frac{\pi}{2} \cdot 1\right) = \sin\left(\frac{\pi}{2}\right) = 1 \] ### Step 5: Conclusion Thus, the limit evaluates to: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos\left(\frac{\pi}{2} \sin^2 x\right)}{\cot\left(\frac{\pi}{2} \sin^2 x\right)} = 1 \] ### Final Answer The value of the limit is \(1\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(2)) (cos^(2)x)/(1-sin^(3)x)=?

The value of lim_(xrarrpi)(sin(2picos^(2)x))/(tan(pisec^(2)x)) . Is equal to

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

lim_(xrarrpi) (sin(pi-x))/(pi(pi-x))

The value of lim_(xrarrpi)(tan(picos^(2)x))/(sin^(2)(2x)) is equal to

lim_(xrarr0) x^2sin.(pi)/(x) , is

The expression (tan(x-(pi)/(2)).cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2)).tan((3pi)/(2)+x)) simplifies to

Lim_(x to pi/2) (1+cos 2x)/(pi-2x)^(2)

Lim_(x to pi/2) (1-sin x)/((pi/2-x)^(2))

lim_(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x) equals (where [.] denotes the greater ineteger function)