Home
Class 12
MATHS
if (x-a)^2+(y-b)^2=c^2 then ({1+((dy)/(d...

if `(x-a)^2+(y-b)^2=c^2` then `({1+((dy)/(dx))^2})^(3/2)/{(d^2y)/(dx^2)} =?`

A

a

B

b

C

-c

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation of a circle given by: \[ (x - a)^2 + (y - b)^2 = c^2 \] We need to find the expression: \[ \frac{(1 + \left(\frac{dy}{dx}\right)^2)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} \] ### Step 1: Differentiate the equation with respect to \(x\) Differentiating both sides of the equation with respect to \(x\): \[ \frac{d}{dx}[(x - a)^2] + \frac{d}{dx}[(y - b)^2] = \frac{d}{dx}[c^2] \] This gives us: \[ 2(x - a) + 2(y - b) \frac{dy}{dx} = 0 \] ### Step 2: Solve for \(\frac{dy}{dx}\) Rearranging the equation, we find: \[ 2(y - b) \frac{dy}{dx} = -2(x - a) \] Dividing both sides by \(2(y - b)\): \[ \frac{dy}{dx} = -\frac{x - a}{y - b} \] ### Step 3: Differentiate \(\frac{dy}{dx}\) to find \(\frac{d^2y}{dx^2}\) Now we need to differentiate \(\frac{dy}{dx}\) again with respect to \(x\): Using the quotient rule: \[ \frac{d^2y}{dx^2} = \frac{(y - b)(-1) - (x - a)\frac{d}{dx}(y - b)}{(y - b)^2} \] Since \(\frac{d}{dx}(y - b) = \frac{dy}{dx}\), we substitute: \[ \frac{d^2y}{dx^2} = \frac{-(y - b) - (x - a)\left(-\frac{x - a}{y - b}\right)}{(y - b)^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = \frac{-(y - b) + \frac{(x - a)^2}{y - b}}{(y - b)^2} \] Combining the terms gives: \[ \frac{d^2y}{dx^2} = \frac{-(y - b)^2 + (x - a)^2}{(y - b)^3} \] ### Step 4: Substitute into the original expression Now we substitute \(\frac{dy}{dx}\) into the expression \(1 + \left(\frac{dy}{dx}\right)^2\): \[ 1 + \left(-\frac{x - a}{y - b}\right)^2 = 1 + \frac{(x - a)^2}{(y - b)^2} \] This simplifies to: \[ \frac{(y - b)^2 + (x - a)^2}{(y - b)^2} = \frac{c^2}{(y - b)^2} \] ### Step 5: Calculate the final expression Now we can substitute back into the original expression: \[ \frac{(1 + \left(\frac{dy}{dx}\right)^2)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{\left(\frac{c^2}{(y - b)^2}\right)^{\frac{3}{2}}}{\frac{-(y - b)^2 + (x - a)^2}{(y - b)^3}} \] This simplifies to: \[ \frac{\frac{c^3}{(y - b)^3}}{\frac{-(y - b)^2 + (x - a)^2}{(y - b)^3}} = \frac{c^3}{-(y - b)^2 + (x - a)^2} \] Since \(-(y - b)^2 + (x - a)^2 = -c^2\) (from the original equation), we find: \[ \frac{c^3}{-c^2} = -c \] ### Final Answer Thus, the value of the expression is: \[ -c \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-a)^2+(y-b)^2=c^2, for some c >0, prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b .

If (x-a)^2+(y-b)^2=c^2, for some c >0, prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

STATEMENT -1 : for the function y= f(x), f(x) ,({1+((dy)/dx)^(2)}^(3/2))/((d^(2)y)/(dx^(2))) = - ({1+ (dx/dy)^(2)}^(3/2))/((d^(2)x)/(dy^(2))) STATEMENT -2 : (dy)/(dx) = (1/(dx))/dy and (d^(2)y)/(dx^(2)) = d/dx (dy/(dx))

If (x-a)^2+(y-b)^2=c^2 , for some c > 0 , prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

If (x-a)^2+(y-b)^2=c^2 , for some c > 0 , prove that ([1+((dy)/(dx))^2]^(3/2))/((d^2y)/(dx^2)) is a constant independent of a and b.

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^-1 (2) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-3 (3) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^-2 (4) -((d^2y)/(dx^2))^-1 ((dy)/(dx))^3

(d^2x)/(dy^2) equals: (1) ((d^2y)/(dx^2))^(-1) (2) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3) (3) ((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-2) (4) -((d^2y)/(dx^2))^(-1)((dy)/(dx))^(-3)

If y^2=a x^2+b x+c , then find (dy)/(dx)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0