Home
Class 12
MATHS
If u=sqrt(a^2 cos^2 theta + b^2sin^2thet...

If `u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta),` then the difference between the maximum and minimum values of `u^2` is given by : (a) `(a-b)^2` (b) `2sqrt(a^2+b^2)` (c) `(a+b)^2` (d) `2(a^2+b^2)`

A

`2sqrt(A^(2)+b^(2))`

B

`(A-b)^(2)`

C

`2(a^(2)+b^(2))`

D

`(a+b)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

(2+sqrt(3)) sin theta +2cos theta lies between

If cos theta + sin theta =sqrt(2) cos theta prove that cos theta -sin theta =sqrt(2) sin theta

c(1+cos2theta)= (A) c 2sin^2theta (B) c2cos^2theta (C) c2tan^2theta (D) none of these

a sin^(2) theta + b cos^(2) theta =c implies tan^(2) theta =

If abs(cos theta{sin theta+sqrt(sin^2theta+sin^2alpha)})lek , then the value of k

If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 theta

If x/a cos theta + y/b sin theta = 1 , x/a sin theta - y/b cos theta = 1 then x^2/a^2 + y^2/b^2 =

If tan theta=a/b then b cos 2theta+asin 2theta=

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

Find the maximum and minimum value of cos^(2) theta- 6 sin theta cos theta + 3 sin^(2) theta + 2 .