Home
Class 12
MATHS
f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e n...

`f(x)={2-|x^2+5x+6|,x!=2a^2+1,x=-2T h e nt h er a ngeofa ,` so that `f(x)` has maxima at `x=-2,` is `|a|geq1` (b) `|a|<1` `a >1` (d) `a<1`

A

`|a| ge 1`

B

`|a| lt 1`

C

`a gt 1`

D

`a lt 1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={:{(2-,|x^(2)+5x+6|",",xne-2),(a^(2),+1",",x=-2):} ,then the range of a, so that f(x) has maxima at x=-2 is

Let f(x)={(1+|x-2|,x!=2),(2,x=2):} then at x=2, f(x) has

Let f(x)={(1+|x-2|, ,x!=2), (2, , x=2):} then at x=2, f(x) has

Let f(x)={a x^2+1,x >1 ; x+1/2,x<=1.t h e n ,f(x) is derivable at x=1, if a=2 (b) a=1 (c) a=0 (d) a=1/2

Let f (x) = {{:(2-|x ^(2) +5x +6|, x ne -2),( b ^(2)+1, x =-2):} Has relative maximum at x =-2, then complete set of values b can take is:

Let f(x)={a x^2+1,\ \ \ \ \ x >1 , \ \ \ \ x+1//2,\ \ \ \ \ xlt=1 Then, f(x) is derivable at x=1 , if a=2 (b) b=1 (c) a=0 (d) a=1//2

Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)| , x!=1,2 & 6, x=1 & 12 , x = 2 then f(x) is continuous on the set (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

Let f(x) = x^(2) - 5x + 6, g(x) = f(|x|), h(x) = |g(x)| The set of value of mu such that equation h(x) = mu has exactly 8 real and distinct roots, contains. (a) 0 (b) 1/8 (c) 1/16 (d) 1/4

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let f(x)=(1-cosx)/(x^2),\ \ \ w h e n\ x!=0,\ f(x)=1,\ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .