Home
Class 12
MATHS
If the function f:[1,oo)rarr[1,oo) is de...

If the function `f:[1,oo)rarr[1,oo)` is defined by `f(x)=2^(x(x-1)),t h e nf^(-1)(x)` is `(1/2)^(x(x-1))` (b) `1/2(1+sqrt(1+4(log)_2x))` `1/2(1-sqrt(1+(log)_2x)` (d) not defined

A

`((1)/(2))^(x(x-1))`

B

`(1)/(2)(1+sqrt(1+4log_(2)x))`

C

`(1)/(2)(1-sqrt(1+4log_(2)x))`

D

Not defined

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f:(1,oo)rarr(1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (a) (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:(1,oo) vec (1,oo) is defined by f(x)=2^(x(x-1)),t h e nf^(-1)(x) is (1/2)^(x(x-1)) (b) 1/2(1+sqrt(1+4(log)_2x)) 1/2(1-sqrt(1+(log)_2x) (d) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2(1+ sqrt(1+4log_2x) ) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1-sqrt(1+4log_2x)) (D) not defined

If the function f:[1,oo)->[1,oo) is defined by f(x)=2^(x(x-1)), then f^-1(x) is (A) (1/2)^(x(x-1)) (B) 1/2 sqrt(1+4log_2x) (C) 1/2(1+sqrt(1+4log_2x)) (D) not defined

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

Find the inverse of the function: f:[1, oo) rarr [1,oo),w h e r ef(x)=2^(x(x-2))

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

If f: Rvec (-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these

If f: Rvec(-1,1) is defined by f(x)=-(x|x|)/(1+x^2),t h e nf^(-1)(x) equals sqrt((|x|)/(1-|x|)) (b) -sgn(x)sqrt((|x|)/(1-|x|)) -sqrt(x/(1-x)) (d) none of these