Home
Class 12
MATHS
int(e^(x)(x-1)(x-lnx))/(x^(2))dx is equa...

`int(e^(x)(x-1)(x-lnx))/(x^(2))dx` is equal to

A

`e^(x)((x-lnx)/(x))+c`

B

`e^(x)((x-lnx+1)/(x))+c`

C

`e^(x)((x-lnx)/(x^(2)))+c`

D

`e^(x)((x-lnx-1)/(x))+c`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

Read the following passages and answer the following questions (7-9) Consider the integrals of the form l=inte^(x)(f(x)+f'(x))dx By product rule considering e^(x)f(x) as first integral and e^(x)f'(x) as second one, we get l=e^(x)f(x)-int(f(x)+f'(x))dx=e^(x)f(x)+c int((1)/(lnx)-(1)/((lnx)^(2)))dx is equal to

int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

The value of int((1+x))/(x(1+x e^(x))^(2))dx , is equal to

int((lnx-1)/((lnx)^(2)+1))^2dx is equal to

int(x e^x)/((1+x)^2)dx is equal to