Home
Class 12
MATHS
If f(x)=sin^(-1)x and g(x)=[sin(cosx)]+[...

If f(x)=`sin^(-1)x` and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where `[*]` denotes greatest integer function)

A

`{-(pi)/(2),(pi)/(2)}`

B

`{-(pi)/(2),0}`

C

`{0, (pi)/(2)}`

D

`{-(pi)/(2),0,(pi)/(2)}`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Find the domain and range of f(x)=log[ cos|x|+1/2] ,where [.] denotes the greatest integer function.