Home
Class 12
MATHS
f(x)=sqrt(x-1)+sqrt(2-x) and g(x)=x^(2)+...

`f(x)=sqrt(x-1)+sqrt(2-x)` and `g(x)=x^(2)+bx+c` are two given functions such that `f(x)` and `g(x`) attain their maximum and minimum values respectively for same value of `x`, then

Text Solution

Verified by Experts

The correct Answer is:
`-3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x)=tanx-2x .

If f(x)=sqrt(x+3) and g(x)=x^2+1 be two real functions, then find fog and gof .

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

Find the maximum and the minimum values, if any, of the function f given by f(x)=x^2,x in R .

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

The number of values of x where the function f(x)=cos x +cos (sqrt(2)x) attains its maximum value is

f(x)=1/abs(x), g(x)=sqrt(x^(-2))