Home
Class 12
MATHS
If f(x+y+z)=f(x)+f(y)+f(z) with f(1)=1 a...

If `f(x+y+z)=f(x)+f(y)+f(z)` with `f(1)=1` and `f(2)=2` and `x,y, z epsilonR` the value of `lim_(xtooo)sum_(r=1)^(n)((4r)f(3r))/(n^(3))` is ……….

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x+y)=f(x).f(y) and f(1)=4 .Find sum_(r=1)^n f(r)

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))

If f(x)=(a^x)/(a^x+sqrt(a ,)),(a >0), then find the value of sum_(r=1)^(2n1)2f(r/(2n))

If 2f(xy) =(f(x))^(y) + (f(y))^(x) for all x, y in R and f(1) =3 , then the value of sum_(t=1)^(10) f(r) is equal to

If f(x+y)=f(x) xx f(y) for all x,y in R and f(5)=2, f'(0)=3, then f'(5)=

Let f(x+1/y) +f(x-1/y) =2f(x) f(1/y) AA x, y in R , y!=0 and f(0)=0 then the value of f(1) +f(2)=

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x) satisfies the relation f(x+y)=f(x)+f(y) for all x , y in Ra n df(1)=5,t h e n f(x)i sa nod dfu n c t ion f(x) is an even function sum_(n=1)^mf(r)=5^(m+1)C_2 sum_(n=1)^mf(r)=(5m(m+2))/3

If f(x+f(y))=f(x)+yAAx ,y in R a n df(0)=1, then find the value of f(7)dot