Home
Class 12
MATHS
Let f be a positive function. Let I(1)=i...

Let `f` be a positive function. Let `I_(1)=int_(1-k)^(k)x f[x(1-x)]dx` , `I_(2)=int_(1-k)^(k)f[x(1-x)]dx`, where `2k-1gt0`. Then `(I_(1))/(I_(2))` is

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a positive function. If I_1 = int_(1-k)^k x f[x(1-x)]\ dx and I_2 = int_(1-k)^k f[x(1-x)]\ dx, where 2k-1 gt 0. Then I_1/I_2 is

Let f be a positive function. Let I_1=int_(1-k)^k xf([x(1-x)])dx , I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s 2 (b) k (c) 1/2 (d) 1

If I_(1)=int_(1-x)^(x) x sin{x(1-x)}dx and I_(2)=int_(1-x)^(x) sin{x(1-x)}dx , then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let f be a function defined by f(x)=4^x/(4^x+2) I_1=int_(f(1-a))^(f(a)) xf{x(1-x)}dx and I_2=int_(f(1-a))^(f(a)) f{x(1-x)}dx where 2a-1gt0 then I_1:I_2 is (A) 2 (B) k (C) 1/2 (D) 1

For x epsilonR , and a continuous function f let I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx and I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx . Then (I_(1))/(I_(2)) is

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

If I_(1)=int_(3pi)^(0) f(cos^(2)x)dx and I_(2)=int_(pi)^(0) f(cos^(2)x) then

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then

If I_(1) = int_(0)^(pi) (x sin x)/(1+cos^2x) dx , I_(2) = int_(0)^(pi) x sin^(4)xdx then, I_(1) : I_(2) is equal to