Home
Class 12
MATHS
f(x)=[x] and g(x)={{:(1",",x gt1),(2",",...

`f(x)=[x] and g(x)={{:(1",",x gt1),(2",", x le 1):}`, (where `[.]` represents the greatest integer function).
Then `g(f(x))` is discontinuous at x = _______________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) \) and \( g(x) \) step by step. ### Step 1: Understand the function \( f(x) \) The function \( f(x) = [x] \) represents the greatest integer function, which means it gives the largest integer less than or equal to \( x \). - For example: - \( f(1.5) = 1 \) - \( f(2.3) = 2 \) - \( f(2) = 2 \) - \( f(3) = 3 \) ### Step 2: Understand the function \( g(x) \) The function \( g(x) \) is defined piecewise: - \( g(x) = 1 \) if \( x > 1 \) - \( g(x) = 2 \) if \( x \leq 1 \) ### Step 3: Find \( g(f(x)) \) Now we need to find \( g(f(x)) \): - If \( x > 1 \), then \( f(x) = [x] \) will be at least \( 1 \). - If \( 1 < x < 2 \), then \( f(x) = 1 \) and \( g(f(x)) = g(1) = 2 \). - If \( x \geq 2 \), then \( f(x) \) will be \( 2 \) or more, and \( g(f(x)) = g(2) = 1 \). - If \( x \leq 1 \), then \( f(x) = [x] \) will be \( 0 \) or \( 1 \). - If \( x < 1 \), then \( f(x) = 0 \) and \( g(f(x)) = g(0) = 2 \). - If \( x = 1 \), then \( f(x) = 1 \) and \( g(f(x)) = g(1) = 2 \). ### Step 4: Summarize \( g(f(x)) \) From the above analysis, we can summarize \( g(f(x)) \) as follows: - For \( x < 1 \): \( g(f(x)) = 2 \) - For \( 1 \leq x < 2 \): \( g(f(x)) = 2 \) - For \( x \geq 2 \): \( g(f(x)) = 1 \) ### Step 5: Identify points of discontinuity The function \( g(f(x)) \) changes from \( 2 \) to \( 1 \) at \( x = 2 \). Therefore, we need to check the continuity at this point: - As \( x \) approaches \( 2 \) from the left (\( x \to 2^- \)), \( g(f(x)) = 2 \). - As \( x \) approaches \( 2 \) from the right (\( x \to 2^+ \)), \( g(f(x)) = 1 \). Since the left-hand limit and the right-hand limit at \( x = 2 \) are not equal, \( g(f(x)) \) is discontinuous at \( x = 2 \). ### Final Answer Thus, \( g(f(x)) \) is discontinuous at \( x = 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Let g(x) = x - [x] - 1 and f(x) = {{:(-1", " x lt 0),(0", "x =0),(1", " x gt 0):} [.] represents the greatest integer function then for all x, f(g(x)) = .

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)