Home
Class 12
MATHS
int(1)^(7)(log sqrt(x))/(log sqrt(8-x)+l...

`int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{1}^{7} \frac{\log \sqrt{x}}{\log \sqrt{8-x} + \log \sqrt{x}} \, dx, \] we can use a property of definite integrals. This property states that if we have an integral of the form \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx, \] we can simplify our calculations. Here, \(a = 1\) and \(b = 7\), so \(a + b = 8\). ### Step 1: Apply the property We can rewrite the integral \(I\) as follows: \[ I = \int_{1}^{7} \frac{\log \sqrt{8-x}}{\log \sqrt{x} + \log \sqrt{8-x}} \, dx. \] ### Step 2: Combine the two integrals Now we have two expressions for \(I\): 1. \(I = \int_{1}^{7} \frac{\log \sqrt{x}}{\log \sqrt{8-x} + \log \sqrt{x}} \, dx\) 2. \(I = \int_{1}^{7} \frac{\log \sqrt{8-x}}{\log \sqrt{x} + \log \sqrt{8-x}} \, dx\) Let's add these two equations: \[ 2I = \int_{1}^{7} \left( \frac{\log \sqrt{x}}{\log \sqrt{8-x} + \log \sqrt{x}} + \frac{\log \sqrt{8-x}}{\log \sqrt{x} + \log \sqrt{8-x}} \right) dx. \] ### Step 3: Simplify the integrand Notice that the two fractions in the integrand add up to 1: \[ \frac{\log \sqrt{x}}{\log \sqrt{8-x} + \log \sqrt{x}} + \frac{\log \sqrt{8-x}}{\log \sqrt{x} + \log \sqrt{8-x}} = 1. \] So we have: \[ 2I = \int_{1}^{7} 1 \, dx. \] ### Step 4: Evaluate the integral Now we can evaluate the integral: \[ \int_{1}^{7} 1 \, dx = 7 - 1 = 6. \] ### Step 5: Solve for \(I\) Thus, we have: \[ 2I = 6 \implies I = \frac{6}{2} = 3. \] ### Final Answer The value of the integral is \[ \boxed{3}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

log(sqrt(x)+1/sqrt(x))

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

y=log[sqrt(x-a)+sqrt(x-b)]

Y=log(4/(sqrt(x+2)+sqrt(2-x)))

int_0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

The value of ("log" 49 sqrt(7) + "log" 25sqrt(5) - "log" 4sqrt(2))/("log" 17.5) , is

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

y=log((sqrt(x+1)+1]/(sqrt(x+1)-1))

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

int x(ln(x+sqrt(1+x^2))/sqrt(1+x^2)dx