Home
Class 12
MATHS
The value of lim(xto0)(1-cos(1-cosx))/(x...

The value of `lim_(xto0)(1-cos(1-cosx))/(x^(4))` is

Text Solution

Verified by Experts

The correct Answer is:
`0.125`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

Evaluate: ("lim")_(xto0)(1-"cos"(1-cosx)dot)/(x^4)

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(xto0)(1/(x^(2))-cotx) is

Evaluate lim_(xto0) (cosx)^(cotx).

If lim_(xto0) [1+x+(f(x))/(x)]^(1//x)=e^(3) , then the value of ln(lim_(xto0) [1+(f(x))/(x)]^(1//x)) is _________.

The value of lim_(xto0)(cos ax)^(cosec^(2)bx) is