Home
Class 12
MATHS
Consider the function f(x) satisfying th...

Consider the function `f(x)` satisfying the relation `f(x+1)+f(x+7)=0AAx in Rdot` STATEMENT 1 : The possible least value of `t` for which `int_a^(a+t)f(x)dx` is independent of `ai s12.` STATEMENT 2 : `f(x)` is a periodic function.

Text Solution

Verified by Experts

The correct Answer is:
`12.00`
Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

The function f(x) satisfies the equation f(x + 1) + f(x-1) = sqrt3 f(x) . then the period of f(x) is

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

Let f be a function satisfying the functional rule 2f(x)+f(1-x)=xAAx in Rdot Then the value of f(1)+f(2)+f(3) is

Let a function f(x)s a t i sfi e sf(x)+f(2x)+f(2-x)+f(1+x)=AAx in Rdot Then find the value of f(0)dot

Let a function f(x) satisfies f(x)+f(2x)+f(2-x)+f(1+x)=x ,AAx in Rdot Then find the value of f(0)dot

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is