Home
Class 12
MATHS
If int(sqrt(cotx))/(sinx cos x)dx=A sqrt...

If `int(sqrt(cotx))/(sinx cos x)dx=A sqrt(cotx)+B`, then A is equal to ______________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \) and express it in the form \( A \sqrt{\cot x} + B \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sqrt{\cot x}}{\sin x \cos x} \, dx \] We can rewrite the denominator \( \sin x \cos x \) as \( \frac{1}{2} \sin(2x) \): \[ I = 2 \int \frac{\sqrt{\cot x}}{\sin(2x)} \, dx \] ### Step 2: Multiply and Divide by \(\csc^2 x\) Next, we multiply and divide the integrand by \(\csc^2 x\): \[ I = \int \frac{\sqrt{\cot x} \cdot \csc^2 x}{\sin x \cos x \cdot \csc^2 x} \, dx \] This gives us: \[ I = \int \frac{\sqrt{\cot x} \cdot \csc^2 x}{\cot x} \, dx \] Since \(\cot x = \frac{\cos x}{\sin x}\), we can simplify: \[ I = \int \frac{\sqrt{\cot x} \cdot \csc^2 x}{\cot x} \, dx = \int \frac{\csc^2 x}{\sqrt{\cot x}} \, dx \] ### Step 3: Substitute \( t = \cot x \) Let \( t = \cot x \). Then, we have: \[ dt = -\csc^2 x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{\csc^2 x} \] Substituting this into the integral gives: \[ I = \int \frac{\csc^2 x}{\sqrt{t}} \left(-\frac{dt}{\csc^2 x}\right) = -\int \frac{1}{\sqrt{t}} \, dt \] ### Step 4: Integrate Now we can integrate: \[ -\int t^{-1/2} \, dt = -2 t^{1/2} + C = -2 \sqrt{\cot x} + C \] ### Step 5: Compare with the Given Form We have: \[ I = -2 \sqrt{\cot x} + C \] Comparing this with the form \( A \sqrt{\cot x} + B \), we find that \( A = -2 \). Thus, the value of \( A \) is: \[ \boxed{-2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int(sqrt(cotx))/(sinxcosx)dx=Psqrt(cotx)+Q , then P equals

Evaluate: int(sqrt(cos2x))/(sinx)dx

int(cotx)/(log(sinx)dx

Find int(sqrt(cotx)+sqrt(tanx))dx

Evaluate: int(cotx)/(sinx)dx

int(sqrt(tanx)+sqrt(cotx))dx is equal to

If l=int(sqrt(tanx)+sqrt(cotx))dx=f(x)+c then f(x) is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int sqrt(1+sinx)dx " is equal to "

int(cotx+cot^3x)/(1+cot^3x)dx