Home
Class 12
MATHS
The portion of the asymptote of hyperbol...

The portion of the asymptote of hyperbola `(x^(2))/(a^(2))-(y^(2))/(b^(2))=1` (between the centre and the tangent at vertex) in the first quadrant is cut by the line `y+lambda(x-a)=0` (`lambda` is a parameter). Then,

Text Solution

Verified by Experts

The correct Answer is:
`therefore lamda in (0,oo)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Portion of asymptote of hyperbola x^2/a^2-y^2/b^2 = 1 (between centre and the tangent at vertex) in the first quadrant is cut by the line y + lambda(x-a)=0 (lambda is a parameter) then (A) lambda in R (B) lambda in (0,oo) (C) lambda in (-oo,0) (D) lambda in R-{0}

The angle between the asymptotes of the hyperbola x^(2)//a^(2)-y^(2)//b^(2)=1 is

The angle between the asymptotes of the hyperbola x^(2) -3y^(2) =3 is

The angle between the asymptotes of the hyperbola x^(2) -3y^(2) =3 is

The angle between the asymptotes of the hyperbola 3x^(2)-y^(2)=3 , is

If the angle between the asymptotes of hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 is (pi)/(3) , then the eccentricity of conjugate hyperbola is _________.

The tangent at P on the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2))=1 meets one of the asymptote in Q. Then the locus of the mid-point of PQ is

Consider the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 . Area of the triangle formed by the asymptotes and the tangent drawn to it at (a, 0) is

Tangents at any point P is drawn to hyperbola (x^(2))/(a^(2)) - (y^(2))/(b^(2)) =1 intersects asymptotes at Q and R, if O is the centre of hyperbola then

The area of the triangle formed by any tangent to the hyperbola x^(2) //a^(2) -y^(2) //b^(2) =1 with its asymptotes is