Home
Class 12
MATHS
If in a Delta ABC, angle A = 45^(@) , an...

If in a `Delta ABC, angle A = 45^(@) , angle B = 75^(@),` then

A

`a + c sqrt3 = 2b`

B

`a + c = 2b`

C

`a + c sqrt2 = 2b`

D

`a - c = 2b `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given angles in triangle ABC and find the necessary relationships. ### Step 1: Identify the Angles Given: - Angle A = 45° - Angle B = 75° ### Step 2: Find Angle C We know that the sum of angles in a triangle is 180°. \[ \text{Angle C} = 180° - \text{Angle A} - \text{Angle B} \] Substituting the values: \[ \text{Angle C} = 180° - 45° - 75° = 60° \] ### Step 3: Summarize the Angles Now we have: - Angle A = 45° - Angle B = 75° - Angle C = 60° ### Step 4: Use the Law of Sines We can apply the Law of Sines, which states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] Let’s denote the sides opposite to angles A, B, and C as a, b, and c respectively. ### Step 5: Express the Sides in Terms of One Side Using the Law of Sines: \[ \frac{a}{\sin 45°} = \frac{b}{\sin 75°} = \frac{c}{\sin 60°} \] We can express the sides in terms of side a: \[ b = a \cdot \frac{\sin 75°}{\sin 45°} \] \[ c = a \cdot \frac{\sin 60°}{\sin 45°} \] ### Step 6: Calculate the Values of Sines Using the known values of sine: - \(\sin 45° = \frac{\sqrt{2}}{2}\) - \(\sin 60° = \frac{\sqrt{3}}{2}\) - \(\sin 75° = \sin(45° + 30°) = \sin 45° \cos 30° + \cos 45° \sin 30° = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} + \sqrt{2}}{4}\) ### Step 7: Substitute the Values Now substituting these values into the equations for b and c: \[ b = a \cdot \frac{\frac{\sqrt{6} + \sqrt{2}}{4}}{\frac{\sqrt{2}}{2}} = a \cdot \frac{\sqrt{6} + \sqrt{2}}{2\sqrt{2}} \] \[ c = a \cdot \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}} = a \cdot \frac{\sqrt{3}}{\sqrt{2}} \] ### Step 8: Final Relationships We can summarize the relationships between the sides: - \(b = a \cdot \frac{\sqrt{6} + \sqrt{2}}{2\sqrt{2}}\) - \(c = a \cdot \frac{\sqrt{3}}{\sqrt{2}}\) ### Conclusion We have found the angles and expressed the sides in terms of one side (a).
Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC, if angle A = 40^(@) and angle B = 55^(@) " then " angle C is

Let ABC be a triangle such that angle A =45^(@) , angle B =75^(@), then a+c sqrt2 is equal to

State whether a unique triangle with the given measurements can be constructed : a. Delta ABC, angle A = 60^(@), angle C = 45^(@) , AC = 9 cm b. Delta ABC, angle A = 135^(@), B = 60^(@) , AB = 7 cm c. Delta MAP, MA = 8 cm, AP = 12 cm, MP = 3 cm d. Delta PQR, PQ = 5 cm, QR = 6 cm, angle Q = 70^(@) e. Delta PQR, PQ = 4 cm, QR = 6 cm, RP = 2 cm f. Delta LMN, LM = 8 cm, MN = 7 cm, angle L = 60^(@)

Construct a Delta ABC with angle B = 50^(@), angle C = 60^(@) , and sides BC = 7.5 cm.

In a triangles ABC , angle A = x^(@) , angle B = (3x - 2) ^(@) and angle C = y^(@) , " Also " ,angle C - angle B = 9^(@) Find all the three angles of the Delta ABC .

Construct a triangle ABC given that AB = 6 cm, angle A = 55^(@) and angle B = 65^(@)

Draw Delta ABC with AB = 5 cm, angle A = 60^(@), and angle B = 75^(@) . Use only compass and scale for construction.

Construct Delta ABC with AB = 7 cm, angle A = 30^(@), angle B = 45^(@) . Use only compass and scale for construction.

If in a Delta ABC, /_A=45^@,/_B=75^@, then

Construct a Delta ABC, with AB = 5 cm, angle A = 45^(@), and angle C = 80^(@) .