Home
Class 12
MATHS
General solution of the equation tan t...

General solution of the equation
`tan theta + tan 4 theta + tan 7 theta = tan theta cdot tan 4 theta cdot tan 7 theta "is" theta = `

A

`(npi)/(12),/n in 1`

B

`(npi)/(4), n in 1`

C

`(n pi)/(3), n in 1`

D

`(npi)/(6), n in 1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the general solution of the equation \[ \tan \theta + \tan 4\theta + \tan 7\theta = \tan \theta \cdot \tan 4\theta \cdot \tan 7\theta, \] we can use the identity for the tangent of the sum of angles. The identity states that: \[ \tan(A + B + C) = \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - (\tan A \tan B + \tan B \tan C + \tan C \tan A)}. \] ### Step 1: Identify the angles Let \( A = \theta \), \( B = 4\theta \), and \( C = 7\theta \). Then we can rewrite the equation as: \[ \tan(\theta + 4\theta + 7\theta) = \tan(180^\circ). \] ### Step 2: Sum the angles Now we sum the angles: \[ \theta + 4\theta + 7\theta = 12\theta. \] ### Step 3: Set the equation Since we know that \( \tan(180^\circ) = 0 \), we can set up the equation: \[ \tan(12\theta) = 0. \] ### Step 4: Solve for \( \theta \) The general solution for \( \tan x = 0 \) is given by: \[ x = n\pi \quad (n \in \mathbb{Z}). \] So we have: \[ 12\theta = n\pi. \] Dividing both sides by 12 gives: \[ \theta = \frac{n\pi}{12}. \] ### Step 5: Convert to degrees If we want the solution in degrees, we can convert: \[ \theta = \frac{n \cdot 180^\circ}{12} = \frac{15n}{1}^\circ. \] ### Final General Solution Thus, the general solution for \( \theta \) is: \[ \theta = 15n^\circ \quad (n \in \mathbb{Z}). \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation tan2theta tan3theta=1 is

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

General solution of tan theta+tan 4 theta+tan 7 theta=tan theta tan 4 theta tan 7 theta is

Prove that: tan 8theta - tan 6theta - tan 2theta = tan 8theta \ tan 6theta \ tan 2theta .

General solution of the equation 4 cot 2 theta = cot^(2) theta - tan^(2) theta is theta =

General solution of the equation tan^(2)theta+sec2theta=1 is

tan theta + 2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta.

Solve: tan4 theta = tan2theta

Prove that : tan 4 theta = (4 tan theta - 4 tan^3 theta)/(1-6 tan^2 theta + tan^4 theta) .

Prove that 1 + tan 2 theta tan theta = sec 2 theta .