Home
Class 12
MATHS
The value of sin ^(-1) (-(1)/(sqrt2)) + ...

The value of `sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) ` is

A

`(5pi)/(12)`

B

`(17pi)/(12)`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1} \left(-\frac{1}{\sqrt{2}}\right) + \cos^{-1} \left(-\frac{1}{2}\right) - \tan^{-1} \left(-\sqrt{3}\right) + \cot^{-1} \left(-\frac{1}{\sqrt{3}}\right) \), we will use some properties of inverse trigonometric functions. ### Step-by-step Solution: 1. **Using the property of sine inverse:** \[ \sin^{-1}(-x) = -\sin^{-1}(x) \] Thus, \[ \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) \] We know that \( \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \). Therefore, \[ \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4} \] 2. **Using the property of cosine inverse:** \[ \cos^{-1}(-x) = \pi - \cos^{-1}(x) \] Thus, \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \cos^{-1}\left(\frac{1}{2}\right) \] We know that \( \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} \). Therefore, \[ \cos^{-1}\left(-\frac{1}{2}\right) = \pi - \frac{\pi}{3} = \frac{2\pi}{3} \] 3. **Using the property of tangent inverse:** \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] Thus, \[ -\tan^{-1}\left(-\sqrt{3}\right) = \tan^{-1}\left(\sqrt{3}\right) \] We know that \( \tan^{-1}\left(\sqrt{3}\right) = \frac{\pi}{3} \). Therefore, \[ -\tan^{-1}\left(-\sqrt{3}\right) = \frac{\pi}{3} \] 4. **Using the property of cotangent inverse:** \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] Thus, \[ \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = \pi - \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) \] We know that \( \cot^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6} \). Therefore, \[ \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right) = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] 5. **Combining all the results:** Now we substitute back into the original expression: \[ -\frac{\pi}{4} + \frac{2\pi}{3} + \frac{\pi}{3} + \frac{5\pi}{6} \] To combine these fractions, we need a common denominator. The least common multiple of 4, 3, and 6 is 12. - Convert each term: \[ -\frac{\pi}{4} = -\frac{3\pi}{12} \] \[ \frac{2\pi}{3} = \frac{8\pi}{12} \] \[ \frac{\pi}{3} = \frac{4\pi}{12} \] \[ \frac{5\pi}{6} = \frac{10\pi}{12} \] - Now combine: \[ -\frac{3\pi}{12} + \frac{8\pi}{12} + \frac{4\pi}{12} + \frac{10\pi}{12} = \frac{19\pi}{12} \] ### Final Answer: The value of the expression is: \[ \frac{19\pi}{12} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

1. sin^(-1)((1)/(sqrt(2))) 2. cos^(-1)((sqrt(3))/(2))

Value of "sin"^(-1)(1)/(sqrt(5))+cot^(-1)3 '' is

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

find the value of sin^(-1)(-sqrt3/2)+cos^(-1)(sqrt3/2)

Find the value of tan^(-1) sqrt3 - cot^(-1) (-sqrt3)

sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+tan^(-1)(-1)+sec^(-1)(sqrt2) equals

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .