Home
Class 12
MATHS
solve sin^(-1) (sin 5) gt x^(2) - 4x...

solve `sin^(-1) (sin 5) gt x^(2) - 4x`

A

`x =2 - sqrt (9-2pi)`

B

`x = 2 + sqrt (9- 2pi)`

C

`x in (2 - sqrt (9- 2pi), 2 + sqrt (9- 2pi))`

D

`x gt 2 + sqrt (2 + 9pi)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The complete set of values of x satisfying the inequality sin^(-1)(sin 5) gt x^(2)-4x is (2-sqrt(lambda-2pi), 2+sqrt(lambda-2pi)) , then lambda=

Solve sin^(-1)x > -1

Solve sin^(-1) x gt tan^(-1) x

Solve sin^(-1) [sin((2x^(2) + 4)/(1 + x^(2)))] lt pi -3

Solve sin^(-1) (sin 6x) = x, x in [0,pi]

sin^-1(sin 5)> x^2-4 x holds if

solve sin(2x)+sin(x)=0?

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)