Home
Class 12
MATHS
If cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r...

If `cos^-1p+cos^-1q+cos^-1r=pi(0 <= p,q,r <= 1).` then the value of `p^2+q^2+r^2+2pqr` is

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \cos^{-1} p + \cos^{-1} q + \cos^{-1} r = \pi \] ### Step 1: Rearranging the Equation We can rearrange the equation to isolate one of the terms: \[ \cos^{-1} p + \cos^{-1} q = \pi - \cos^{-1} r \] ### Step 2: Using the Cosine Addition Formula Using the cosine addition formula, we know that: \[ \cos^{-1} p + \cos^{-1} q = \cos^{-1}(pq - \sqrt{(1 - p^2)(1 - q^2)}) \] Thus, we can write: \[ pq - \sqrt{(1 - p^2)(1 - q^2)} = \cos(\pi - \cos^{-1} r) \] ### Step 3: Simplifying the Right Side The cosine of \(\pi - x\) is \(-\cos x\), therefore: \[ pq - \sqrt{(1 - p^2)(1 - q^2)} = -r \] ### Step 4: Rearranging the Equation Rearranging gives us: \[ pq + r = \sqrt{(1 - p^2)(1 - q^2)} \] ### Step 5: Squaring Both Sides Now we square both sides: \[ (pq + r)^2 = (1 - p^2)(1 - q^2) \] ### Step 6: Expanding Both Sides Expanding both sides yields: \[ p^2q^2 + 2pqr + r^2 = 1 - p^2 - q^2 + p^2q^2 \] ### Step 7: Simplifying the Equation We can simplify this by cancelling \(p^2q^2\) from both sides: \[ 2pqr + r^2 = 1 - p^2 - q^2 \] ### Step 8: Rearranging to Find the Desired Expression Rearranging gives: \[ p^2 + q^2 + r^2 + 2pqr = 1 \] ### Conclusion Thus, we find that: \[ p^2 + q^2 + r^2 + 2pqr = 1 \] ### Final Answer The value of \(p^2 + q^2 + r^2 + 2pqr\) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)=pi,p rov et h a tx^2+y^2+z^2+2x y z=1.

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi, then xy + yz +zx is equal to

If cos^(-1)x + cos^(-1)y + cos^(-1)z = 3pi, then xy + yz +zx is equal to

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , prove that x^(2)+y^(2)+z^(2)+2xyz=1

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , prove that x^(2) + y^(2) + z^(2) + 2xyz = 1

Prove that the identities, sin^-1 cos(sin^-1x)+cos^-1 sin(cos^-1x)=pi/2 , |x|<=1

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)

Solve : cos^(-1) (sin cos^(-1)x ) =(pi)/(6) .

Which of the following is/are the value of cos [(1)/(2) cos^(-1) (cos (-(14pi)/(5)))] ?

(i) Evaluate : sec (cos^(-1).(1)/(2)) (ii) slove the equations sin^(-1) x + sin^(-1) y = (2pi)/(3) and cos^(-1) x - cos ^(-1) y = (pi)/(3)