Home
Class 12
MATHS
If sin{cot^-1(x+1)}="cos"(tan^(-1)x), th...

If `sin{cot^-1(x+1)}="cos"(tan^(-1)x),` then find `x`

A

`A = sqrt ((1+ x ^(2))/(2 + x ^(2)))`

B

`A = sqrt ((2+ x ^(2))/(4 + x ^(2)))`

C

`A = sqrt ((2+ x ^(2))/(3+ x ^(2)))`

D

`A = sqrt ((3+ x ^(2))/(7+ x ^(2)))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: sin(cot^(-1)x) (ii) cos(tan^(-1)x)

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Simplify sin(cot^(-1)(cos(tan^(-1)x))),0 ltxlt1 .

If alpha le sin^(-1)x+cos^(-1)x +tan^(-1)xlebeta then find the value of alpha and beta

sin(cot^(-1)(tan(tan^(-1)x))),"x" in (0," 1]

If alpha = sin^(-1) (cos(sin^-1) x)) and beta = cos^(-1) (sin (cos^(-1) x)) , then find tan alpha. tan beta.

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2)) cos [tan^(-1) (cot^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

If tan(cos^(-1) x) = sin (cot^(-1).(1)/(2)) , then find the value of x