Home
Class 12
MATHS
tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+ta...

`tan^(- 1)x+tan^(- 1)\ (2x)/(1-x^2)=pi+tan^(- 1)\ (3x-x^3)/(1-3x^2),(x >0)` is true if

A

`x lt (1)/(sqrt3)`

B

`(1)/(sqrt3) lt x lt 1`

C

`x gt (1)/(sqrt3)`

D

`(1)/(sqrt3) lt x lt sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \pi + \tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right), \quad (x > 0) \] we can use the properties of the inverse tangent function. ### Step 1: Use the formula for the tangent of a sum We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] when \(ab < 1\). In our case, we can apply this to the left-hand side: Let \(a = x\) and \(b = \frac{2x}{1-x^2}\). Then, \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \tan^{-1}\left(\frac{x + \frac{2x}{1-x^2}}{1 - x \cdot \frac{2x}{1-x^2}}\right) \] ### Step 2: Simplify the left-hand side Now, we simplify the expression: The numerator becomes: \[ x + \frac{2x}{1-x^2} = \frac{x(1-x^2) + 2x}{1-x^2} = \frac{x(1 - x^2 + 2)}{1-x^2} = \frac{x(3 - x^2)}{1-x^2} \] The denominator becomes: \[ 1 - x \cdot \frac{2x}{1-x^2} = \frac{(1-x^2) - 2x^2}{1-x^2} = \frac{1 - 3x^2}{1-x^2} \] Thus, we have: \[ \tan^{-1}\left(\frac{x(3 - x^2)}{1 - 3x^2}\right) \] So, the left-hand side simplifies to: \[ \tan^{-1}\left(\frac{x(3 - x^2)}{1 - 3x^2}\right) \] ### Step 3: Set the left-hand side equal to the right-hand side Now we equate this to the right-hand side: \[ \tan^{-1}\left(\frac{x(3 - x^2)}{1 - 3x^2}\right) = \pi + \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) \] ### Step 4: Use the properties of the inverse tangent Using the property \(\tan^{-1}(a) + \pi = \tan^{-1}(a) + \tan^{-1}(-1)\) when \(a < 0\), we can rewrite the right-hand side: \[ \tan^{-1}\left(\frac{x(3 - x^2)}{1 - 3x^2}\right) = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) + \pi \] This implies: \[ \frac{x(3 - x^2)}{1 - 3x^2} = -\frac{3x - x^3}{1 - 3x^2} \] ### Step 5: Solve the equation Cross-multiplying gives: \[ x(3 - x^2) = -(3x - x^3) \] This simplifies to: \[ x(3 - x^2) + 3x - x^3 = 0 \] Combining terms: \[ 3x - x^3 + 3x - x^3 = 0 \implies 6x - 2x^3 = 0 \] Factoring out \(2x\): \[ 2x(3 - x^2) = 0 \] Thus, \(x = 0\) or \(3 - x^2 = 0\) which gives \(x^2 = 3\) or \(x = \sqrt{3}\). ### Step 6: Determine the valid range for \(x\) Since \(x > 0\), we have \(x = \sqrt{3}\). Now we need to check the conditions under which the original equation holds. From the properties of the tangent function, we find that the equation is valid when \(x\) lies between \(\frac{1}{\sqrt{3}}\) and \(1\). ### Conclusion Thus, the solution to the equation is: \[ x \in \left(\frac{1}{\sqrt{3}}, 1\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)